

Outline of Talk

- Quick Review of How Interferometry Works
- Overview of Existing Interferometric Arrays
 VLA, WSRT, GMRT, VLBA
- Parameters of Array Design
 - min/max baseline lengths, number of elements, etc.
- Figures of Merit for Arrays Designs
 - resolution, angular scale, sidelobe levels, etc.
- Optimizing Array Configurations
- Large N, Small D concept

Compensating for Incomplete uv-

Coverage

- Deconvolution
 - works well for simple sources
 - breaks down for large complex sources
- Re-Weighting
 - uniform weighting plus taper can lower sidelobes
 - reduces sensitivity but may increase dynamic range
- Multi-Frequency Synthesis
 - combine data from a wide range of frequencies in the uv-plane
 - greatly increases uv-coverage
 - need to deal with spectral variations

Importance of uv-coverage

- Image Dynamic Range
 - Limited by sidelobes in the beam
- Image fidelity
 - ability to reconstruct complex source structure
 - gaps in uv-coverage will limit this
- Resolution
 - Determined by the longest baselines in the array
- Sensitivity to large scale structure
 - Determined by the shortest baselines in the array

Westerbork	Synthesis R	adio "	
I elescone	 Located in Westerbork, Holland 		
	 Has 14 antennas, 25m diameter 		
All and all and all and all and all all all all all all all all all al	 East-West Array 		
	 Requires Earth Rotation Synthesis for all imaging 		
Dedicated in 1970: one of the earlies major interferometric arrays			
	- 1 km	- 2 km	
	-0		
		-1	
A REAL PROPERTY AND A REAL		-3^3 -2 -1 0 1 2 km	

Very Long Baseline Array

- Built in 1995
- 10 VLA-type antennas
- Spread throughout continental US plus Hawaii and St. Croix
- Maximum baseline over 8,000 km
- Elements not
 electronically connected
 - must bring recorded data to central correlator
- Can achieve resolution of milli-arcseconds

Configuration

- Maximum Baseline Length
 Determines the resolution
- Minimum Baseline Length
 Determines the sensitivity to large scale features
- Number of Elements (N)
 - Limiting factor in how low sidelobes can be
 - This will affect the ultimate dynamic range achievable
- Array shape
 - This determines uv-coverage and distribution

Effect of the range of baseline

 For very complex sources, a large dynamic range between the longest and shortest baselines is needed

Radio Galaxy Hydra A at 330 MHz

23

Array Optimization 28	8
Trial and Error	
 devise configurations and calculate metrics (works OK for small N) 	
Random Distribution	
 Lack of geometric pattern reduces redundancy 	
 Works surprisingly well for large N 	
 Simulated Annealing (Cornwell) 	
 Define uv 'energy' function to minimize – log of mean uv distance 	
 UV-Density & pressure (Boone) 	
 Steepest descent gradient search to minimize uv density differences with ideal uv density (e.g., Gaussian) 	
 Genetic algorithm (e.g., Cohanim et al.,2004) 	
 Pick start configs, breed new generation using crossover and mutation, select, repeat 	
 PSF optimization (Kogan) 	
 Minimize biggest sidelobe using derivatives of beam wrt antenna locations (iterative process) 	

Simulations

- Simulations are the ultimate test of array design
 - see how well the uv-coverage performs in practice
- Consider likely target objects
 - Generate realistic models of sky
 - Simulate data, adding in increasing levels of reality
 - Atmosphere, pointing errors, dish surface rms etc.
 - Process simulated data & compare final images for different configurations – relative comparison
 - Compare final images with input model
 - Image fidelity absolute measure of goodness of fit
 - · Compare with specifications for DR and fidelity

Large-N / Small-D Concept

- N = number of antennas in array
- D = diameter of antennas in array
- Collecting Area (ND²) kept constant
- uv-coverage is drastically improved while the pointsource sensitivity is unchanged
- This can also be the most cost effective way to achieve the desired collecting area

Large-N / Small-D Concept

Advantages of higher N (at constant ND²)

- Synthesized beam sidelobes decrease as ~1/N
- Field of view increases as ~N (for dishes)
- Redundancy of calibration increases as N
- uv-tracks crossings increase as N⁴

Disadvantages of higher N (at constant ND²)

- Computation times can increase by up to N⁵ !!!
 - N² times more baselines
 - N times as many pixels in the FOV
 - N times as much channel resolution
 - N times as much time resolution
- Need correlator with more capacity
- Higher data rate

