

Walter Brisken

Outline

2

- The correlation function
- What is a correlator?
- Simple correlators
- Sampling and quantization
- . Spectral line correlators
- Software correlators

This lecture is complementary to Chapter 4 of ASP 180

The VLBA Correlator

3

The Correlation Function

$$C_{ij}(\tau) = \langle v_i(t)v_j(t+\tau)\rangle_T$$

- . If i=j it is an auto-correlation (AC). Otherwise it is a cross-correlation (CC).
- . Useful for
 - Determining timescales (AC)
 - Motion detection (2-D CC)
 - Optical character recognition (2-D CC)
 - Pulsar timing / template matching (CC)

What is a Correlator?

Į

In radio astronomy, a correlator is any device that combines sampled voltage time series from one or more antennas to produce sets of complex visibilities, $V_{i\,j}$.

- · Visibilities are in general a function of
 - Frequency / polarization
 - Antenna pair
 - Time
- . They are used for
 - Imaging
 - Spectroscopy / polarimetry
 - Astrometry

A Real (valued) Cross Correlator

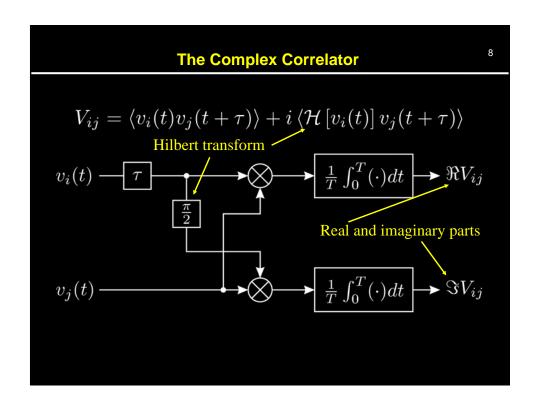
$$C_{ij}(\tau) = \langle v_i(t)v_j(t+\tau)\rangle_T$$

$$v_i(t) \xrightarrow{\tau} \text{Multiplier}$$

$$\frac{1}{T} \int_0^T (\cdot)dt \xrightarrow{\mathsf{Accumulator}} C_{ij}$$

Visibilities

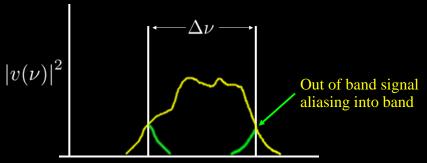
What astronomers really want is the complex visibility


$$V_{ij} = \left\langle E_i(t) E_j^*(t+\tau) \right\rangle$$

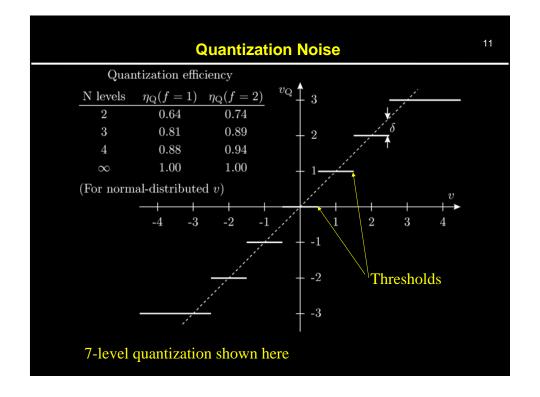
where the real part of $E_i(t)$ is the voltage measured by antenna i .

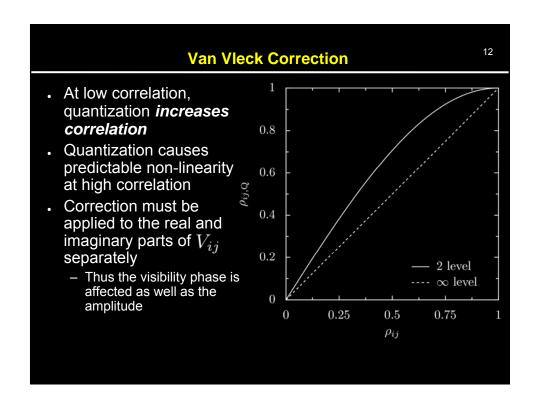
So what is the imaginary part of $E_i(t)$?

It is the same as the real part but with each frequency component *phase* lagged by 90 degrees.


$$E_i(t) = v_i(t) + \frac{i}{\pi} \int_{-\infty}^{\infty} \frac{v_i(t')}{t - t'} dt'$$
Hilbert transform

Nyquist-Shannon Sampling Theorem


S


- If v(t) is a real-valued time series sampled at "uniform" intervals, Δt , then a bandwidth $\Delta \nu = \frac{1}{2\Delta t}$ can be accurately reconstructed.
 - Uniform in which time system?
- v(t) must be band limited.
 - Out of band signal is aliased into the band

Quantization

- Sampling involves quantization of the signal
 - Quantization noise non-Gaussian!
 - Strong signals become non-linear
 - Sampling theorem violated
 - · Can no longer faithfully reconstruct original signal
- Quantization is often quite coarse
 - 3 levels at VLA
 - 2 or 4 at VLBA
 - Thresholds must be chosen carefully
- Unwanted noise lessens the impact of quantization at expense of sensitivity.
 - Usually T_{sys} >> T_{source}

The Delay Model

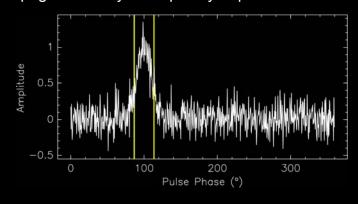
13

14

- au is the difference between the geometric delays of antenna i and antenna i. It can be + or .
- The *delay center* moves across the sky with Earth rotation
 - $-\tau$ is changing constantly
- Fringes at the delay center are stopped.
 - Long time integrations can be done
 - Wide bandwidths can be used
- . Simple delay models incorporate:
 - Antenna locations
 - Source position
 - Earth orientation
- VLBI delay models must include much more!

Fractional Sample Delay Compensation

$\tau = n\Delta t + \epsilon$

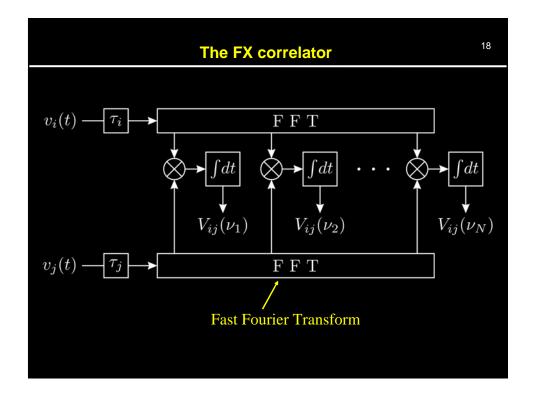

- Delays must be corrected to better than Δt .
- Integer delay is usually done with digital delay lines.
- Fractional sample delay is trickier
- It is implemented differently at different correlators
 - Analog delay lines (DRAO array)
 - Add delay to the sampling clock (VLA)
 - Correct phases after multiplier (VLBA)

Note: this topic is covered extensively in ASP 180.

Pulsar Gating

15

- . Pulsars emit regular pulses with small duty cycle
- . Period in range 1 ms to 8 s; $\Delta t \ll P_{\rm pulsar} < T$. Blanking during off-pulse improves sensitivity
- · Propagation delay is frequency dependent



Spectral Line Correlators

- . Chop up bandwidth for
 - Calibration
 - Bandpass calibration
 - Fringe fitting
 - Spectroscopy
 - Wide-field imaging
- Conceptual version
 - Build analog filter bank
 - Attach a complex correlator to each filter
- But...
 - Every channel is an edge channel
 - Bandwidth is wasted

Practical Spectral Line Correlators

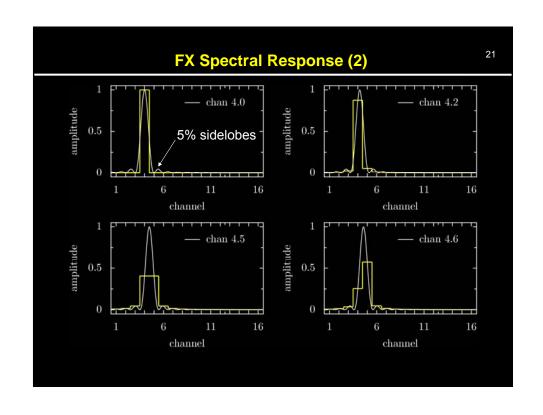
- . Want to use a single filter & sampler
 - Easier to calibrate
 - Practical, up to a point
- . The FX architecture
 - F: Replace filterbank with digital Fourier transform
 - X: Use a complex-correlator for each frequency channel
 - Then integrate
- The XF architecture
 - X: Measure correlation function at many lags
 - Integrate
 - F : Fourier transform
- Other architectures or combinations of the above are possible

FX Correlators

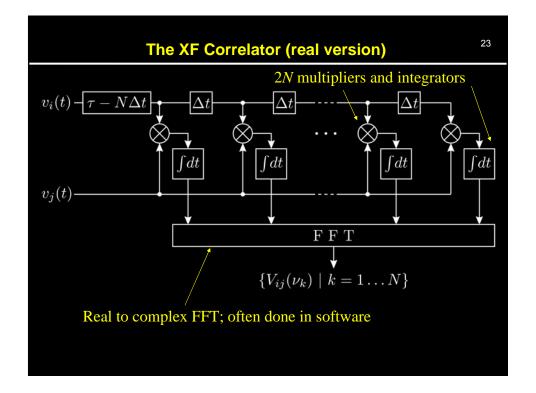
19

- Spectrum is available before integration
 - Can apply fractional sample delay per channel
 - Can apply pulsar gate per channel
- Most of the digital parts run N times slower than the sample rate

FX Spectral Response


20

. FX Correlators derive spectra from truncated time series

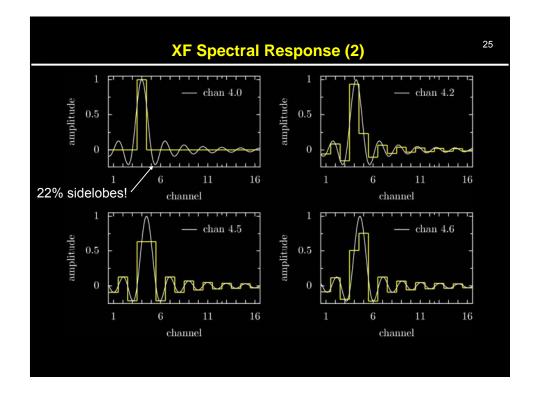

$$\begin{array}{rcl} v(\nu) & = & \mathcal{F}\left[v(t)\cdot \sqcap\left(\frac{t}{N\Delta t}\right)\right] \\ & = & \mathcal{F}\left[v(t)\right]\star\mathcal{F}\left[\sqcap\left(\frac{t}{N\Delta t}\right)\right] \\ & \propto & \mathcal{F}\left[v(t)\right]\star\mathrm{sinc}\left(N\Delta t\nu\right) \end{array}$$

• Results in convolved visibility spectrum Convolution

$$V_{ij}(\nu) = \langle (\mathcal{F}[v_i(t)] \star \operatorname{sinc}(N\Delta t\nu)) (\mathcal{F}[v_j(t)] \star \operatorname{sinc}(N\Delta t\nu))^* \rangle$$

= $\langle \mathcal{F}[v_i(t)] \mathcal{F}[v_j(t)]^* \rangle \star \operatorname{sinc}^2(N\Delta t\nu)$

XF Spectral Response


24

. XF correlators measure lags over a finite delay range

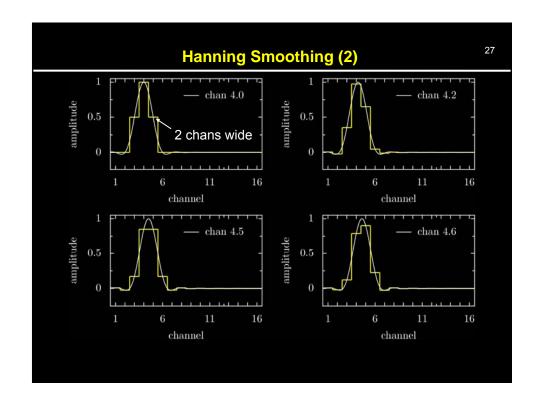
$$V_{ij}(\tau) = \langle v_i(t)v_j(t+\tau)\rangle \cdot \Box \left(\frac{\tau}{N\Delta t}\right)$$

. Results in convolved visibility spectrum

$$V_{ij}(\nu) = \mathcal{F}\left[\langle v_i(t)v_j(t+\tau)\rangle \cdot \sqcap \left(\frac{\tau}{N\Delta t}\right)\right]$$
$$= \mathcal{F}\left[\langle v_i(t)v_j(t+\tau)\rangle\right] \star \operatorname{sinc}(N\Delta t \nu)$$

Hanning Smoothing

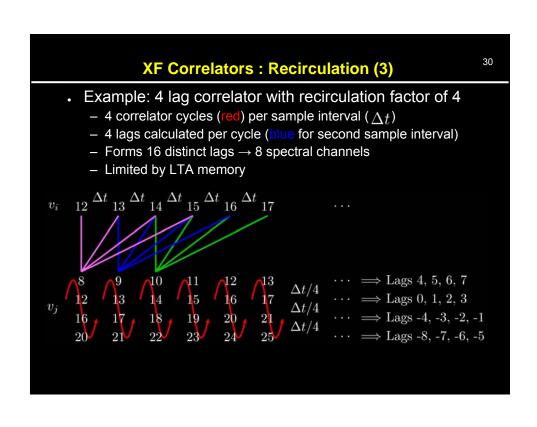
26

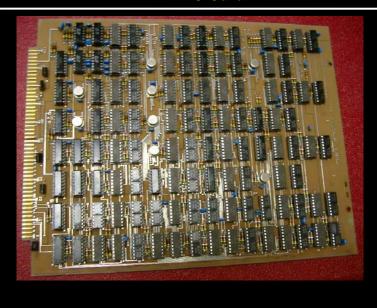

• Multiply lag spectrum by Hanning taper function

$$H(\tau) = \frac{1}{2} \left(1 + \cos \frac{\pi \tau}{N \Delta t} \right)$$

. This is equivalent to convolution of the spectrum by

$$H(\nu) = \frac{1}{2}\delta(\nu) + \frac{1}{4}\delta\left(\nu - \frac{1}{2N\Delta t}\right) + \frac{1}{4}\delta\left(\nu + \frac{1}{2N\Delta t}\right)$$


 Note that spectral resolution is reduced because the longest lags are down-weighted.



XF Correlators : Recirculation

- 28
- If the correlator runs at a fixed speed, then a slower input data rate can be processed with more lags in the same amount of time.
- A factor of two decrease in bandwidth can result in *four times* the spectral resolution.
 - x2 from reduced bandwidth
 - x2 from more lags

$\begin{array}{c} \textbf{XF Correlators : Recirculation (2)} \\ \textbf{.} \quad \textbf{Example: 4 lag correlator, no recirculation} \\ \textbf{.} \quad \textbf{.} \quad \textbf{1 correlator cycle per sample interval (Δt)} \\ \textbf{.} \quad \textbf{.} \quad \textbf{4 lags calculated per cycle (blue for second sample interval)} \\ \textbf{.} \quad \textbf{Forms 4 distinct lags} \rightarrow \textbf{2 spectral channels} \\ \textbf{v}_i \quad \textbf{0} \quad \Delta t \quad \Delta t \quad \textbf{2} \quad \Delta t \quad \textbf{3} \quad \Delta t \quad \textbf{4} \quad \textbf{5} \\ \textbf{v}_i \quad \textbf{0} \quad \Delta t \quad \Delta t \quad \textbf{2} \quad \Delta t \quad \textbf{3} \quad \Delta t \quad \textbf{4} \quad \textbf{5} \\ \textbf{0} \quad \textbf{0} \quad \textbf{0} \quad \textbf{0} \quad \textbf{0} \quad \textbf{0} \quad \textbf{0} \\ \textbf{0} \quad \textbf{0} \quad \textbf{0} \quad \textbf{0} \quad \textbf{0} \quad \textbf{0} \\ \textbf{0} \quad \textbf{0} \quad \textbf{0} \quad \textbf{0} \quad \textbf{0} \\ \textbf{0} \quad \textbf{0} \quad \textbf{0} \quad \textbf{0} \quad \textbf{0} \\ \textbf{0} \quad \textbf{0} \\ \textbf{0} \quad \textbf{0} \quad \textbf{0} \quad \textbf{0} \\ \textbf{0} \quad \textbf{0} \quad \textbf{0} \quad \textbf{0} \\ \textbf{0} \quad \textbf{0} \quad \textbf{0} \quad \textbf{0} \\ \textbf{0} \quad \textbf{0} \quad \textbf{0} \\ \textbf{0} \quad \textbf{0} \quad \textbf{0} \quad \textbf{0} \\ \textbf{0} \quad \textbf{0} \quad \textbf{0} \\ \textbf{0} \quad \textbf{0} \quad \textbf{0} \quad \textbf{0} \quad \textbf{0} \\ \textbf{0} \quad \textbf{0} \quad \textbf{0} \quad \textbf{0} \\ \textbf{0} \quad \textbf{0} \quad \textbf{0} \quad \textbf{0} \quad \textbf{0} \quad \textbf{0} \\ \textbf{0} \quad \textbf{0} \quad \textbf{0} \quad \textbf{0} \quad \textbf{0} \\ \textbf{0} \quad \textbf{0} \quad \textbf{0} \quad \textbf{0} \quad \textbf{0} \quad \textbf{0} \\ \textbf{0} \quad \textbf{0} \quad \textbf{0} \quad \textbf{0}$

The EVLA WIDAR Correlator

- . XF architecture duplicated 64 times, or "FXF"
 - Four 2 GHz basebands per polarization
 - Digital filter-bank makes 16 sub-bands per baseband
 - 16,384 channels/baseline at full sensitivity
 - 4 million channels with recirculation!
- . Initially will support 32 stations; upgradable to 48
- 2 stations at 25% bandwidth or 4 stations at 6.25% bandwidth can replace 1 station input
- Correlator efficiency is about 95%
 - Compare to 81% for VLA
- VLBI ready
- . Will add enormously to VLA capabilities!

Software Correlators

- 33
- Hardware correlator = special purpose computer
- Software correlator = general purpose computer running special purpose software
- Replace circuits with subroutines
- Typically FX correlators require least compute cycles and offer most flexibility

Software Correlators : Advantages

- Accuracy In hardware extra precision means more wiring and circuitry and compromises are often made
- Flexibility Spectral resolution, time resolution, number of inputs, ... not limited
- Expandability A software correlator running on a computer cluster can be incrementally upgraded
- Rapid development Changes and fixes don't require rewiring. Debugging is simpler.
- Special modes Much easier to implement in software
- Utilization All processor power is usable at all times
- . Cheaper In development

Software Correlators : Disadvantages

35

- Compared to equivalent hardware correlator:
 - Power hungry
 - Big
 - More expensive? (per processing power)

Software Correlators : Performance

- For a cluster of 3 GHz Pentium processors
 - VLA correlator ~ 150 CPUs
 - VLBA correlator ~ 250 CPUs
 - EVLA correlator ~ 200,000 CPUs!
- Other means of achieving high compute rates
 - Floating point accelerators, DSPs, FPGAs
 - The Cell processor
 - Graphics Processing units

Software Correlators : Niche Uses

37

- Baseband recorded data
 - Data rates limited by recording media
 - Media costs greater than processing costs!
- . High spectral & time resolution
 - Masers
 - Spacecraft tracking
 - Very wide fields of view
- VLBI fringe checking

Generally good for VLBI!

Things To Remember

- Correlator = device to calculate the correlation function
 - Typically special purpose computers
 - Software correlators becoming practical
- Two major classes of spectral line correlators
 - XF (or lag) correlator (e.g. VLA)
 - FX correlator (e.g. VLBA)
- Geometric delays need to be compensated to high accuracy
- Correlated visibilities are imperfect due to
 - Quantization
 - Spectral response
 - Delay model errors