

Ylva Pihlström (UNM) Craig Walker (NRAO)

Tenth Summer Synthesis Imaging Workshop University of New Mexico, June 13-20, 2006

Differences VLBI and connected interferometry

- Not fundamentally different, only issues that lead to different considerations during calibration
- Rapid phase variations and gradients introduced by
 - Separate clocks
 - Independent atmosphere at the antennas
 - Phase stabilities varies between telescopes
 - Model uncertainties due to inaccurate source positions, station locations, and Earth orientation, which are difficult to know to a fraction of a wavelength
 - Solve by fringe fitting

Differences VLBI and connected interferometry (continued)

- The calibrators are not ideal since they are a little resolved and often variable
 - No standard flux calibrators
 - No point source amplitude calibrators
 - Solve by using T_{sys} and gains to calibrate amplitudes
- Only sensitive to limited scales
 - Structure easily resolved out
 - Solve by including shorter baselines (MERLIN, VLA)

The	/LBA delay m	odel	19
	Item	Approx Max.	Time scale
	Zero order geometry.	6000 km	1 day
	Nutation	~ 20 "	< 18.6 yr
	Precession	$\sim 0.5 \text{ arcmin/yr}$	years
	Annual aberration.	20"	1 year
	Retarded baseline.	20 m	1 day
	Gravitational delay.	4 mas @ 90° from sun	1 year
	Tectonic motion.	10 cm/yr	years
	Solid Earth Tide	50 cm	12 hr
	Pole Tide	2 cm	$\sim 1 \text{ yr}$
	Ocean Loading	2 cm	12 hr
	Atmospheric Loading	2 cm	weeks
	Post-glacial Rebound	several mm/yr	years
	Polar motion	0.5 arcsec	~ 1.2 years
	UT1 (Earth rotation)	Several mas	Various
	Ionosphere	$\sim 2 \text{ m at } 2 \text{ GHz}$	All
Adapted from Sovers, Fanselow, and Jacobs, Reviews of Modern Physics,	Dry Troposphere	2.3 m at zenith	hours to days
	Wet Troposphere	0-30 cm at zenith	All
	Antenna structure	<10 m. 1cm thermal	
	Parallactic angle	0.5 turn	hours
Oct 1998.	Station clocks	few microsec	hours
	Source structure	5 cm	years

		lono	spheri	c delay	29				
 Delay scales with 1/v² Ionosphere dominates errors at low frequencies Can correct with dual band observations (S/X) or GPS based models 									
Maximum Likely Ionospheric Contributions Delays from an S/X									
Freq Dela	v Delav	Rate	Rate	Geodesy Observation					
GHz ns	ns	mHz	mHz	0					
0.327 110	D 110	12	1.2	○ S/X Data Delays. Elevation cutoff: 2.0 deg.	1				
0.610 320	32	6.5	0.6	(s)	100				
1.4 60	6.0	2.8	0.3	<u> </u>	- in which it				
2.3 23	2.3	1.7	0.2	Service and a	a second				
5.0 5.0	0.5	0.8	0.1	G					
8.4 1.7	0.2	0.5	0.05						
15 0.5	0.05	0.3	0.03	0	t				
22 0.2	0.02	0.2	0.02	γ 0.6 0.5 $Time (Days)$	1,4				
43 0.1	0.01	0.1	0.01	Tille (Days)					

Editing	32
 Flags from on-line system will remove most bad data Antenna off source Subreflector out of position Synthesizers not locked 	
 Final flagging done by examining data Flag by antenna (most problems are antenna based) Poor weather Bad playback RFI (may need to flag by channel) First point in scan sometimes bad 	

Fringe fitting

- For astronomy:
 - Remove clock offsets and align baseband channels ("manual pcal")
 - Fit calibrator to track most variations
 - Fit target source if strong
 - Used to allow averaging in frequency and time
 - Allows higher SNR self calibration (longer solution, more bandwidth)
- For geodesy:
 - Fitted delays are the primary "observable"
 - Correlator model is added to get "total delay", independent of models

Fringe fitting theory

39

- Interferometer phase $\phi_{t,v} = 2\pi v \tau_t$
- Phase error $d\phi_{t,v} = 2\pi v d\tau_t$
- Linear phase model $\Delta \phi_{t,v} = \phi_0 + (\delta \phi / \delta v) \Delta v + (\delta \phi / \delta t) \Delta t$
- Determining the delay and rate errors is called "fringe fitting"
- Fringe fit is self calibration with first derivatives in time and frequency

Phase referencing	42
 Calibration using phase calibrator outside target source field Nodding calibrator (move antennas) In-beam calibrator (separate correlation pass) Multiple calibrators for most accurate results – get gradients 	
 Similar to VLA calibration except: Geometric and atmospheric models worse Model errors usually dominate over fluctuations Errors scale with total error times source-target separation in radians Need to calibrate often (5 minute or faster cycle) Need calibrator close to target (< 5 deg) Used by about 30-50% of VLBA observations 	

43

- No phase calibration: source not detected
- Phase referencing: detected, but distorted structure (targetcalibrator separation probably large)
- Self-calibration on this strong source shows real structure

Additional spectral line corrections

49

- Doppler shifts:
 - Without Doppler tracking, the spectra will shift during the observations due to Earth rotation.
 - Recalculate in AIPS: shifts flux amongst frequency channels, so you want to do the amplitude only BP calibration first
- Self-cal on line:
 - can use a bright spectral-line peak in one channel for a onechannel self-cal to correct antenna based temporal phase and amplitude fluctuations and apply the corrections to all channels

Scheduling hints

- PI provides the detailed observation sequence
- The schedule should include:
 - Fringe finders (strong sources at least 2 scans)
 - Amplitude check source (strong, compact source)
 - If target is weak, include a delay/rate calibrator
 - If target very weak, use phase referencing
 - For spectral line observations, include bandpass calibrator
- Leave occasional gaps for tape readback tests (2 min)
- For non-VLBA observations, manage tapes
 - Tape passes and tape changes
 - With Mark5, only worry about total data volume

