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Introduction

» From the first lecture, we have a general relation between
the complex visibility V(u,v,w), and the sky intensity I(I,m):

V (U, V, W) =”| (I, m) exp{—2zi[ul + vm+w(n—1)]} didm/n

where n=+1-1%—nv

» This equation is valid for:
« spatially incoherent radiation from the far field,
 phase-tracking interferometer
* narrow bandwidth

* What is ‘narrow bandwidth’?
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Review: Coordinate Frame

The unit direction vector s

is defined by its projections
on the (u,v,w) axes. These
components are called the
Direction Cosines, (I,m,n)

| = cos(x)
m= cos(/3)
n=cos(y) =v1-1?—nv

u
The baseline vector b is specified by its coordinates (u,v,w)
(measured in wavelengths).

b = (Au, Av, Aw)

When approximations fail us ...

* Under certain conditions, this integral relation can
be reduced to a 2-dimensional Fourier transform.

» This occurs when one of two conditions are met:
1. All the measures of the visibility are taken on a plane, or
2. The field of view is ‘sufficiently small’, given by:
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Table showing the
VLA'’s distortion
free imaging range
(green), marginal
zone (yellow), and
danger zone




Not a 3-D F.T. — but let’s do it anyway ...

If your source, or your field of view, is larger than the ‘distortion-
free’ imaging diameter, then the 2-d approximation employed in
routine imagine are not valid, and you will get a crappy image.

In this case, we must return to the general integral relation
between the image intensity and the measured visibilities.

The general relationship is not a Fourier transform. It thus doesn’t
have an immediate inversion.

But, we can consider the 3-D Fourier transform of V(u,v,w), giving
a 3-D ‘image volume’ F(I,m,n), and try relate this to the desired
intensity, 1(I,m).

The mathematical details are straightforward, but tedious, and are
given in detail on pp 384-385 in the White Book.

The 3-D Image Volume

» We find that:
Fd,mn)= j”vo(u, v, W) exp[27zi (ul + vm+ wn)]dudvdw
where
V,(u,v,w) =exp(-2ziw) V(u,v,w)
* F(I,m,n) is related to the desired intensity, I(l,m), by:

1(I, m)

2

5( 1-1°—m? —1)

F({,mn)= O

This relation looks daunting, but in fact has a lovely
geometric interpretation.




Interpretation

The modified visibility V,(u,v,w) is simply the observed
visibility with no ‘fringe tracking'.

It's what we would measure if the fringes were held
fixed, and the sky moves through them.

The bottom equation states that the image volume is
everywhere empty (F(I,m,n)=0), except on a spherical
surface of unit radius where

1?+m*+n°=1
The correct sky image, I(I,m)/n, is the value of F(I,m,n)
on this unit surface

Note: The image volume is not a physical space. It is a mathematical construct.

Benefits of a 3-D Fourier Relation

The identification of a 3-D Fourier relation means that
all the relationships and theorems mentioned for 2-d
imaging in earlier lectures carry over directly.

These include:

— Effects of finite sampling of V(u,v,w).

— Effects of maximum and minimum baselines.

— The ‘dirty beam’ (now a ‘beam ball’), sidelobes, etc.
— Deconvolution, ‘clean beams’, self-calibration.

All these are, in principle, carried over unchanged,
with the addition of the third dimension.

But the real world makes this straightforward approach
unattractive (but not impossible).




Coordinates

* Where on the unit sphere are sources found?

| =cososinAa
M=38in¢d cosd, —CoSI Sin J, COSAx

N=siNJdSINJ, +C0SO COSO COSA

where 9, = the reference declination, and
Ao = the offset from the reference right ascension.

However, where the sources appear on a 2-d plane is a
different matter.

lllustrative Example — a slice through the m =0 plane

Upper Left: True Image. Upper right: Dirty Image.
Lower Left: After deconvolution. Lower right: After projection
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Snapshots in 3D Imaging

A snapshot VLA observation, seen in ‘3D’, creates ‘line beams’
(orange lines) , which uniquely project the sources (red bars) to
the image plane (blue).

Except for the tangent point, the apparent locations of the
sources move in time.

Apparent Source Movement

As seen from the sky, the plane containing the VLA
rotates through the day.

This causes the ‘line-beams’ associated with the
snapshot images to rotate.

The apparent source position in a 2-D image thus rotates,
following a conic section. The loci of the path is:

| = —(1—1—I2—m2)tanZsin‘PP
m = m+(1—1—|2—m2)taanos‘PP

where Z = the zenith distance, and ‘¥, = parallactic angle,
And (I,m) are the correct angular coordinates of the source.




Wandering Sources

» The apparent source motion is a function of zenith
distance and parallactic angle, given by:

tan y =

cosgsinH

Singcoso —cosgsin o cosH

CoSZ =sSin@gsind + cos¢ coso cosH

where

H = hour angle
0 = declination
¢ = antenna latitude

And around they go ...
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On the 2-d (tangent)
image plane, source
positions follow conic
sections.

The plots show the loci for
declinations 90, 70, 50,
30, 10, -10, -30, and -40.
Each dot represents the
location at integer HA.

The path is a circle at
declination 90.

The only observation with
no error is at HA=0, 6=34.

The error scales
quadratically with source
offset from the phase
center.
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Schematic Example

* Imagine a 24-hour
observation of the
north pole. The
“simple’ 2-d output
map will look
something like
this.

The red circles
represent the
apparent source
structures.

Each doubling of
distance from the
phase center
guadruples the
extent of the
distorted image.

How bad is it?

In practical terms ...
The offset is (1 - cos y) tan Z ~ (y?*tan Z)/2 radians
For a source at the antenna beam half-power, y ~ A/2D

So the offset, €, measured in synthesized beamwidths,
(A/B) at the half-power of the antenna beam can be
WHEHIES

B = maximum baseline
. /18 tanZ D = antenna diameter
i 8D2 Z = zenith distance

A = wavelength

E

For the VLA’s A-configuration, this offset error, at the
antenna FWHM, can be written:
€~ Ay (tan Z2)/20  (in beamwidths)

This is very significant at meter wavelengths, and at
high zenith angles (low elevations).




So, What can we do?

There are a number of ways to deal with this problem.
Compute the entire 3-d image volume.

* The most straightforward approach, but hugely
wasteful in computing resources!

The minimum number of ‘vertical planes’ needed is:
N,, ~ B62/A ~ AB/D?

The number of volume pixels to be calculated is:
Npix ~ 4B30%/A° ~ 4AB3/D*

But the number of pixels actually needed is: 4B2%/D?

So the fraction of the pixels in the final output map
actually used is: D?/AB. (~ 2% at A =1 meter in A-
configuration!)

Deep Cubes!

To give an idea of the scale of processing, the table below shows
the number of ‘vertical’ planes needed to encompass the VLA's
primary beam.

For the A-configuration, each plane is at least 2048 x 2048.
For the New Mexico Array, it's at least 16384 x 16384!

And one cube would be needed for each spectral channel, for
each polarization!




2. Polyhedron Imaging

* The wasted effort is in computing pixels we don’t
need.

» The polyhedron approach approximates the unit
sphere with small flat planes, each of which stays
close to the sphere’s surface.

facet

/

For each subimage,
the entire dataset must be
phase-shifted, and the (u,v,w)
recomputed for the new plane.

Polyhedron Approach, (cont.)

How many facets are needed?
If we want to minimize distortions, the plane mustn’t
depart from the unit sphere by more than the
synthesized beam, A/B. Simple analysis (see the
book) shows the number of facets will be:
N; ~ 2AB/D?

or twice the number needed for 3-D imaging.
But the size of each image is much smaller, so the
total number of cells computed is much smaller.

The extra effort in phase computation and (u,v,w)

rotation is more than made up by the reduction in the

number of cells computed.
This approach is the current standard in AIPS.
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Polyhedron Imaging

* Procedure is then:
Determine number of facets, and the size of each.

Generate each facet image, rotating the (u,v,w) and phase-
shifting the phase center for each.

Jointly deconvolve the set. The Clark/Cotton/Schwab
major/minor cycle system is well suited for this.

Project the finished images onto a 2-d surface.

» Added benefit of this approach:

— As each facet is independently generated, one can imagine
a separate antenna-based calibration for each.

— Useful if calibration is a function of direction as well as time.
— This is needed for meter-wavelength imaging.

W-Projection

Although the polyhedron approach works well, it is
expensive, and there are annoying boundary issues —
where the facets overlap.

Is it possible to project the data onto a single (u,v)
plane, accounting for all the necessary phase shifts?

Answer is YES! Tim Cornwell has developed a new
algorithm, termed ‘w-projection’, to do this.

Available only in CASA (formerly known as AIPS++),
this approach permits a single 2-d image and
deconvolution, and eliminates the annoying edge
effects which accompany re-projection.
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W-Projection
Each visibility, at location (u,v,w) is mapped to the w=0 plane, with a
phase shift proportional to the distance.
Each visibility is mapped to ALL the points lying within a cone whose
full angle is the same as the field of view of the desired map — ~2A/D
for a full-field image.
Area in the base of the cone is ~4A2w?/D? < 4B%/D2. Number of cells
on the base which ‘receive’ this visibility is ~ 4w,?B2/D? < 4B4/\?D>.

w

W-Projection

The phase shift for each visibility onto the w=0 plane
is in fact a Fresnel diffraction function.

Each 2-d cell receives a value for each observed
visibility within an (upward/downwards) cone of full
angle 6 < A/D (the antenna’s field of view).

In practice, the data are non-uniformly vertically
gridded — speeds up the projection.

There are a lot of computations, but they are done
only once.

Spatially-variant self-cal can be accommodated (but
hasn't yet).
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An Example — without ‘3-D’ Procesesing

Example — with 3D processing

13



Conclusion (of sorts)

Arrays which measure visibilities within a 3-
dimensional (u,v,w) volume, such as the VLA, cannot
use a 2-d FFT for wide-field and/or low-frequency
imaging.

The distortions in 2-d imaging are large, growing
quadratically with distance, and linearly with

wavelength.
In general, a 3-d imaging methodology is necessary.

Recent research shows a Fresnel-diffraction
projection method is the most efficient, although the
older polyhedron method is better known.

Undoubtedly, better ways can yet be found.
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