

Introduction

 From the first lecture, we have a general relation between the complex visibility V(u,v,w), and the sky intensity I(l,m):

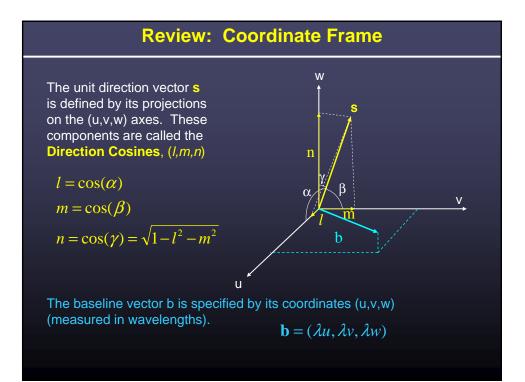
 $V(u,v,w) = \iint I(l,m) \exp\{-2\pi i [ul+vm+w(n-1)]\} dldm/n$

where

$$n = \sqrt{1 - l^2 - m^2}$$

- This equation is valid for:
 - spatially incoherent radiation from the far field,
 - phase-tracking interferometer
 - narrow bandwidth
- What is 'narrow bandwidth'?

$$\Delta v \ll \frac{\theta_{res}}{\theta_{offset}} v_0 = \frac{\lambda}{B} \frac{D}{\lambda} v_0 = \frac{D}{B} v_0$$



When approximations fail us									
 Under certain conditions, this integral relation can be reduced to a 2-dimensional Fourier transform. This occurs when one of two conditions are met: All the measures of the visibility are taken on a plane, or The field of view is 'sufficiently small', given by: 									
$oldsymbol{ heta}_{ ext{max}} < \sqrt{rac{1}{ ext{w}}} \leq \sqrt{rac{\lambda}{ ext{B}}} \sim \sqrt{oldsymbol{ heta}_{ ext{syn}}}$									
	λ	θ_{ant}	А	В	С	D			
Table showing the VLA's distortion free imaging range (green), marginal zone (yellow), and danger zone (red)	6 cm	9'	6'	10'	17'	31'			
	20 cm	30'	10'	18'	32'	56'			
	90 cm	135'	21'	37'	<mark>66</mark> '	118'			
	400 cm	600'	45'	80'	142'	253'			

Not a 3-D F.T. – but let's do it anyway ...

- If your source, or your field of view, is larger than the 'distortionfree' imaging diameter, then the 2-d approximation employed in routine imagine are not valid, and you will get a crappy image.
- In this case, we must return to the general integral relation between the image intensity and the measured visibilities.
- The general relationship is not a Fourier transform. It thus doesn't have an immediate inversion.
- But, we can consider the 3-D Fourier transform of V(u,v,w), giving a 3-D 'image volume' F(*l*,*m*,*n*), and try relate this to the desired intensity, I(*l*,*m*).
- The mathematical details are straightforward, but tedious, and are given in detail on pp 384-385 in the White Book.

The 3-D Image Volume

- We find that:
 - $F(l,m,n) = \iiint V_0(u,v,w) \exp[2\pi i(ul+vm+wn)] du dv dw$ where

 $V_0(u, v, w) = \exp(-2\pi i w) V(u, v, w)$

• *F*(*l*,*m*,*n*) is related to the desired intensity, I(*l*,*m*), by:

$$F(l,m,n) = \frac{I(l,m)}{\sqrt{1 - l^2 - m^2}} \delta\left(\sqrt{1 - l^2 - m^2} - 1\right)$$

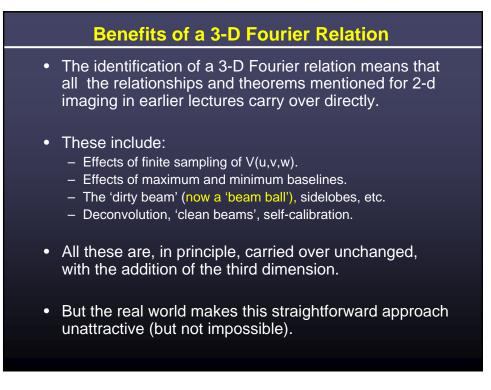
This relation looks daunting, but in fact has a lovely geometric interpretation.

Interpretation

- The modified visibility V₀(u,v,w) is simply the observed visibility with no 'fringe tracking'.
- It's what we would measure if the fringes were held fixed, and the sky moves through them.
- The bottom equation states that the image volume is everywhere empty (F(*l*,*m*,*n*)=0), except on a spherical surface of unit radius where

$$l^2 + m^2 + n^2 = 1$$

- The correct sky image, I(*l*,*m*)/n, is the value of F(*l*,*m*,*n*) on this unit surface
- Note: The image volume is not a physical space. It is a mathematical construct.



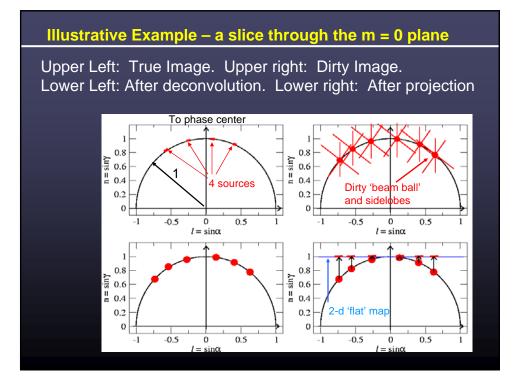
Coordinates

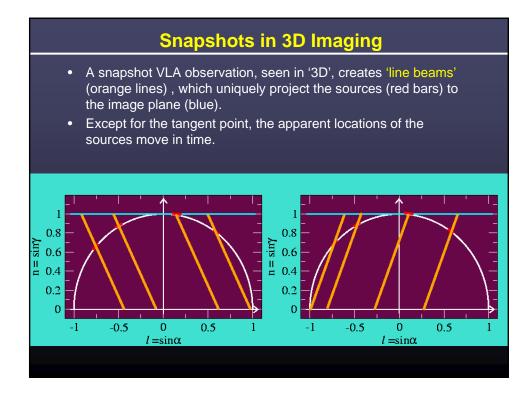
• Where on the unit sphere are sources found?

 $l = \cos \delta \sin \Delta \alpha$ $m = \sin \delta \cos \delta_0 - \cos \delta \sin \delta_0 \cos \Delta \alpha$ $n = \sin \delta \sin \delta_0 + \cos \delta \cos \delta \cos \Delta \alpha$

where δ_0 = the reference declination, and $\Delta \alpha$ = the offset from the reference right ascension.

However, where the sources appear on a 2-d plane is a different matter.





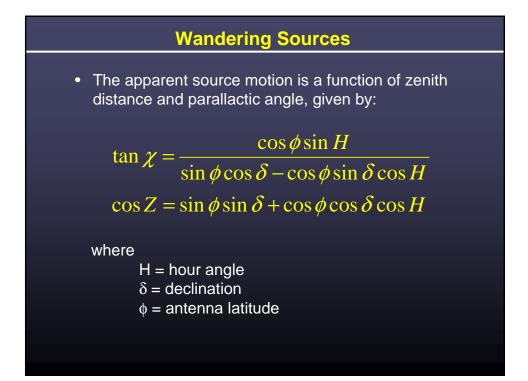
Apparent Source Movement

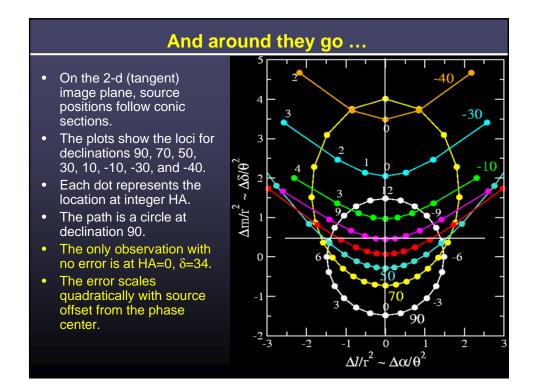
- As seen from the sky, the plane containing the VLA rotates through the day.
- This causes the 'line-beams' associated with the snapshot images to rotate.
- The apparent source position in a 2-D image thus rotates, following a conic section. The loci of the path is:

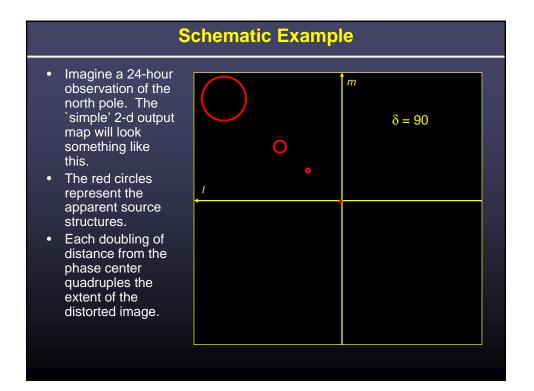
$$l' = l - (1 - \sqrt{1 - l^2 - m^2}) \tan Z \sin \Psi_P$$

$$m' = m + (1 - \sqrt{1 - l^2 - m^2}) \tan Z \cos \Psi_P$$

where Z = the zenith distance, and Ψ_P = parallactic angle, And (I,m) are the correct angular coordinates of the source.





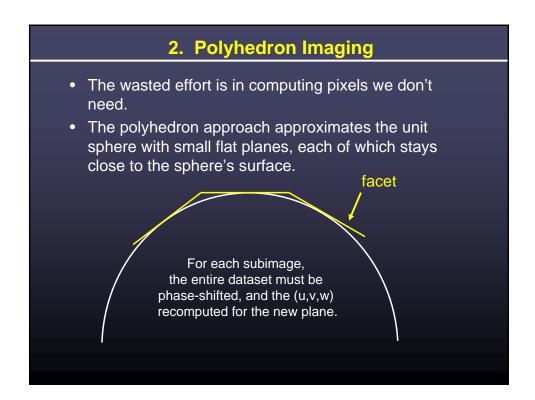


How bad is it?						
 In practical terms The offset is (1 - cos γ) tan Z ~ (γ²) For a source at the antenna beam So the offset, ε, measured in synth (λ/B) at the half-power of the anten written as ε = λB/8D² tan Z 	half-power, $\gamma \sim \lambda/2D$ nesized beamwidths,					
 For the VLA's A-configuration, this antenna FWHM, can be written: ε ~ λ_{cm} (tan Z)/20 (ir This is very significant at meter was high zenith angles (low elevations) 	n beamwidths) avelengths, and at					

So, What can we do?

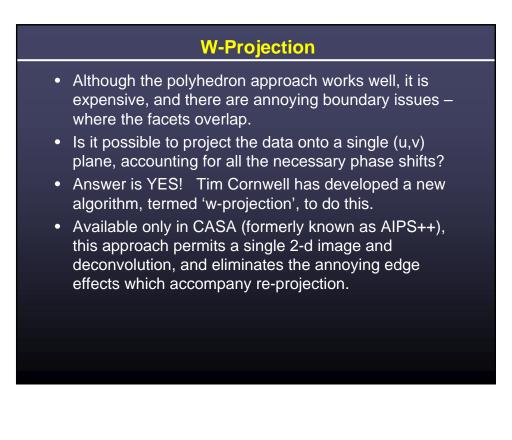
- There are a number of ways to deal with this problem.
- 1. Compute the entire 3-d image volume.
 - The most straightforward approach, but hugely wasteful in computing resources!
 - The minimum number of 'vertical planes' needed is: $N_n \sim B \theta^2 / \lambda \sim \lambda B / D^2$
 - The number of volume pixels to be calculated is: $N_{pix} \sim 4B^3\theta^4/\lambda^3 \sim 4\lambda B^3/D^4$
 - But the number of pixels actually needed is: 4B²/D²
 - So the fraction of the pixels in the final output map actually used is: $D^2/\lambda B$. (~ 2% at $\lambda = 1$ meter in A-configuration!)

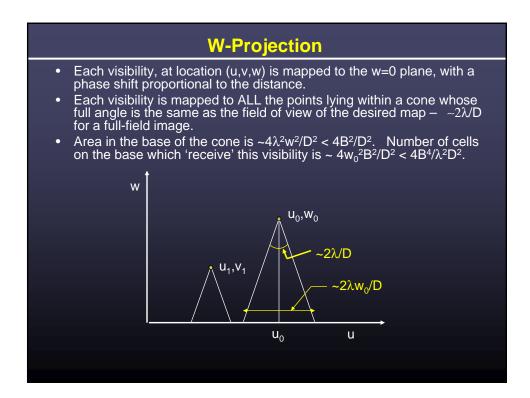
Deep Cubes!									
To give a the numb primary b	per of 've								
For the A-configuration, each plane is at least 2048 x 2048.									
For the N	lew Mex	kico Ar <u>ra</u>	y, it's at	least 16	384 x <u>16</u>	384!			
a a a b mal	each polarization! λ NMA A B C D E								
·	arization		В	С	D	Е	1		
λ	NMA	Α	_						
·			B 68	C 23	D 7	Е 2			
λ	NMA	Α	_						
λ 400cm	NMA 2250	A 225	68	23	7	2			
λ 400cm 90cm	NMA 2250 560	A 225 56		23 6	7 2	2 1			
λ 400cm 90cm 20cm	NMA 2250 560 110	A 225 56 11	68 17 4	23 6 2	7 2 1	2 1 1			



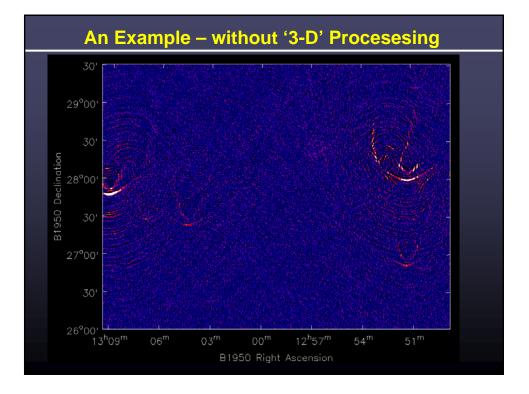
Polyhedron Imaging

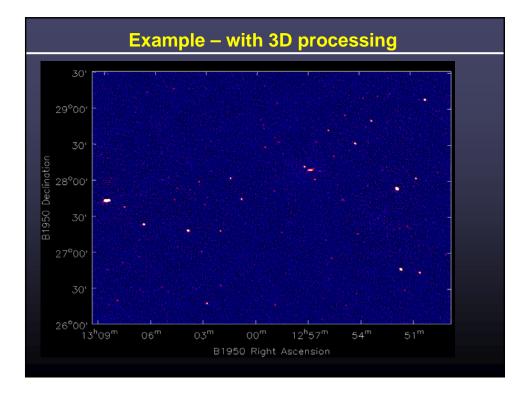
- Procedure is then:
 - Determine number of facets, and the size of each.
 - Generate each facet image, rotating the (u,v,w) and phaseshifting the phase center for each.
 - Jointly deconvolve the set. The Clark/Cotton/Schwab major/minor cycle system is well suited for this.
 - Project the finished images onto a 2-d surface.
- Added benefit of this approach:
 - As each facet is independently generated, one can imagine a separate antenna-based calibration for each.
 - Useful if calibration is a function of direction as well as time.
 - This is needed for meter-wavelength imaging.





 The phase shift for each visibility onto the w=0 plane is in fact a Fresnel diffraction function. Each 2-d cell receives a value for each observed visibility within an (upward/downwards) cone of full angle θ < λ/D (the antenna's field of view). In practice, the data are non-uniformly vertically gridded – speeds up the projection. There are a lot of computations, but they are done only once. Spatially-variant self-cal can be accommodated (but hasn't yet). 	W-Projection	
	 is in fact a Fresnel diffraction function. Each 2-d cell receives a value for each observed visibility within an (upward/downwards) cone of full angle θ < λ/D (the antenna's field of view). In practice, the data are non-uniformly vertically gridded – speeds up the projection. There are a lot of computations, but they are done only once. Spatially-variant self-cal can be accommodated (but 	





Conclusion (of sorts)

- Arrays which measure visibilities within a 3dimensional (u,v,w) volume, such as the VLA, cannot use a 2-d FFT for wide-field and/or low-frequency imaging.
- The distortions in 2-d imaging are large, growing quadratically with distance, and linearly with wavelength.
- In general, a 3-d imaging methodology is necessary.
- Recent research shows a Fresnel-diffraction projection method is the most efficient, although the older polyhedron method is better known.
- Undoubtedly, better ways can yet be found.