

Crystal Brogan

Claire Chandler & Todd Hunter

- Why a special lecture on mm interferometry?
 - High frequency interferometry suffers from unique problems
 - We are poised on the brink of a mm/summ revolution with the advent of new telescopes

Tenth Synthesis Imaging Summer School, University of New Mexico, June 13-20, 2006

Summary of existing and future mm/sub-mm arrays

Telescope	altitude (feet)	diam. (m)	No. dishes	A (m²)	v _{max} (GHz)
NMA	2,000	10	6	470	250
CARMA ¹	7,300	3.5/6/10	23	800	250
IRAM PdB	8,000	15	6	1060	250
JCMT-CSO	14,000	10/15	2	260	650
SMA	14,000	6	8	230	650
ALMA ²	16,400	12	50	5700	950

¹ BIMA+OVRO+SZA 3.5 m Array at higher site = CARMA first call for proposals soon

² First call for early science proposals expected in Q2 2009, planned for full operation by 2012

Science at mm/sub-mm wavelengths:
molecular line emission

• Most of the dense ISM is H_2 , but H_2 has no permanent dipole moment \Rightarrow use trace molecules

Tal	ole 28–1.	Low Order	Rotational	Transitions of	Simple Heavy	Molecules
-	Molecule	J(1-0)	J(2-1)	J(3-2)	$n_{crit}[J(1-0)]$	
		GHz	GHz	GHz	$\rm cm^{-3}$	
-	CO	115.271	230.538	345.795	$10^2 - 10^3$	
	\mathbf{CS}	48.991	97.981	146.969	$10^3 - 10^4$	
	HCN	88.631	177.260	265.886	10^{5}	
	HCO^+	89.188	178.375	267.557	10^{5}	
	SiO	43.122	86.243	130.268	$10^3 - 10^4$	

Plus: many more complex molecules (e.g. N₂H⁺, CH₃OH, CH₃CN, etc)

- Probe kinematics, density, temperature
- Abundances, interstellar chemistry, etc...
- For an optically-thin line $S_v \propto v^4$; $T_B \propto v^2$ (cf. dust)

|--|

H ₂	HD	H ₃ +	H ₂ D+	~	*0		
CH	CH ⁺	C ₂	CH ₂	C ₂ H	^C ₃		
CH ₃	C ₂ H ₂	C ₃ H(lin)	c-C ₃ H	*CH ₄	C ₄		
c-C ₃ H ₂	H ₂ CCC(lin)		C₄H	*C ₅	*C ₂ H ₄	C₅H	
$H_2C_4(lin)$	*HC₄H	CH ₃ C ₂ H	C ₆ H	*HC ₆ H	H_2C_6		
*С ₇ Н	CH₃C₄H	C₅H	*C ₆ H ₆				
ОН	CO	CO+	H ₂ O	HCO	HCO+		
HOC+	C ₂ O	CO ₂	H₃O+	HOCO+	H₂CO		
C ₃ O	CH₂CO	НСООН	H ₂ COH+	CH ₃ OH	CH₂CHO		
CH ₂ CHOH	CH ₂ CHCH0	О	HC ₂ CHO	C ₅ O	CH ₃ CHO	c-C₂H₄O	
CH ₃ OCHO	CH ₂ OHCH	0	CH ₃ COOH	CH ₃ OCH ₃	CH ₃ CH ₂ OF	I CH ₃ CH ₂ C	Ю
(CH ₃) ₂ CO	HOČH,CH,	,OH	C ₂ H ₅ OCH ₃	(CH,OH),C	:o ^{° -} 0:		
NH	CN ¹	N ₂	NH ₂ ĭ	HCN	HNC		
N₂H⁺	NH₂	HĈNH⁺	H₂ĆN	HCCN	C₂N		
CH,CN	CH ₂ NH	HC ₂ CN	HĈ₂NC	NH ₂ CN	C _₄ NH		
CH ₂ CN	CH ₂ NC	HC₅NH⁺	*HĆ₄N	C₌Ń			
CH ₂ CHCN	HC₄N	CH ₂ C ₂ N	CH ₂ CH ₂ CH ₂ CN	IHC₂N	CH _s C₅N?	HC₀N	HC44N
NO	HNO	N2O	HNCO	NH2CHO		- 9	
SH	CS	SO	SO+	NS	SiH		
*SiC	SiN	SiO	SiS	HCI	*NaCl		
*AICI	*KCI	HF	*AIF	*CP	PN		
H _a S	C.S	SO.	OCS	HCS+	c-SiC		
*SiCN	*SiNC	*NaCN	*MaCN	*MaNC	*AINC		
HCS	HNCS	CS	c-SiC	*SiH	*SiC		
	CS	EeO	00103		0104		
0113011	050	1.00					

Problems unique to the mm/sub-mm

- Atmospheric opacity significant λ<1cm: raises T_{sys} and attenuates source
 - Opacity varies with frequency and altitude
 - Gain calibration must correct for opacity variations
- Atmospheric phase fluctuations
 - Cause of the fluctuations: variable H₂O
 - Calibration schemes must compensate for induced loss of visibility amplitude (coherence) and spatial resolution (seeing)
- Antennas
 - Pointing accuracy measured as a fraction of the primary beam is more difficult to achieve: PB ~ 1.22 λ /D
 - Need more stringent requirements than at cm wavelengths for: surface accuracy & baseline determination

Problems, continued...

16

- · Instrument stability
 - Must increase linearly with frequency (delay lines, oscillators, etc...)
- Millimeter/sub-mm receivers
 - SIS mixers needed to achieve low noise characteristics
 - Cryogenics cool receivers to a few K
 - IF bandwidth
- Correlators
 - Need high speed (high bandwidth) for spectral lines:
 - $\Delta V = 300 \text{ km s}^{-1} \rightarrow 1.4 \text{ MHz} @ 1.4 \text{ GHz}, 230 \text{ MHz} @ 230 \text{ GHz}$
 - Broad bandwidth also needed for sensitivity to thermal continuum and phase calibration
- Limitations of existing and future arrays

 - Limited uv-coverage, small number of elements (improved with CARMA, remedied with ALMA)

Atmospheric opacity, continued

23

Typical optical depth for 345 GHz observing at the SMA:

at zenith τ_{225} = 0.08 = 1.5 mm PWV, at elevation = 30° \Rightarrow τ_{225} = 0.16

Conversion from 225 GHz to 345 GHz $\Rightarrow~\tau_{345} \sim$ 0.05 +2.25 $\tau_{225} \sim$ 0.41

 $\overline{T_{sys}(DSB)} = \overline{T_{sys}}e^{\tau} = e^{\tau}(T_{atm}(1-e^{-\tau}) + \overline{T_{rec}}) = 1.5(101 + 100) \sim 300 \text{ K}$ assuming $T_{atm} = 300 \text{ K}$

For single sideband, $T_{sys}(SSB) = 2 T_{sys} (DSB) \sim 600 K$

 \Rightarrow Atmosphere adds considerably to T_{sys} and since the opacity can change rapidly, T_{sys} must be measured often

41

Do:

- · Use shortest possible integration times given strength of calibrators
- Point often
- Use closest calibrator possible
- Include several amplitude check sources
- · Bandpass calibrate often on strong source
- *Always* correct bandpass before gain calibration (phase slopes across wide band)
- Always correct phases before amplitude (prevent decorrelation)

Practical aspects of observing at high frequencies with the VLA

43

44

Note: details may be found at <u>http://www.aoc.nrao.edu/vla/html/highfreq/</u>

- · Observing strategy: depends on the strength of your source
 - Strong (≥ 0.1 Jy on the longest baseline for continuum observations, stronger for spectral line): can apply self-calibration, use short integration times; no need for fast switching
 - Weak: external phase calibrator needed, use short integration times and fast switching, especially in A & B configurations
 - If strong maser in bandpass: monitor the atmospheric phase fluctuations using the maser, and apply the derived phase corrections; use short integration times, calibrate the instrumental phase offsets between IFs every 30 mins or so

- Referenced pointing: pointing errors can be a significant fraction of a beam at 43 GHz
 - Point on a nearby source at 8 GHz every 45-60 mins, more often when the az/el is changing rapidly. Pointing sources should be compact with $F_{8GHz} \ge 0.5$ Jy
- · Calibrators at 22 and 43 GHz
 - Phase calibration: the spatial structure of water vapor in the troposphere requires that you find a phase calibrator < 3° from your source, if at all possible; for phase calibrators weaker than 0.5 Jy you will need a separate, stronger source to track amplitude variations
 - Absolute Flux calibrators: 3C48/3C138/3C147/3C286. All are extended, but there are good models available for 22 and 43 GHz

Practical aspects, continued...

45

- · If you have to use fast switching
 - Quantify the effects of atmospheric phase fluctuations (both temporal and spatial) on the resolution and sensitivity of your observations by including measurements of a nearby point source with the same fast-switching settings: cycle time, distance to calibrator, strength of calibrator (weak/strong)
 - If you do not include such a "check source" the temporal (but not spatial) effects can be estimated by imaging your phase calibrator using a long averaging time in the calibration
- · During the data reduction
 - Apply phase-only gain corrections first, to avoid de-correlation of amplitudes by the atmospheric phase fluctuations

