

High Dynamic Range Imaging

Craig Walker

Tenth Summer Synthesis Imaging Workshop University of New Mexico, June 13-20, 2006

WHAT IS HIGH DYNAMIC RANGE IMAGING? AND WHY DO IT?

- Accurate imaging with a high brightness ratio.
 - High quality imaging of strong sources
 - Flux evolution of components
 - Motions of components
 - Detection of weak features
 - Imaging of weak sources near strong sources
 - Deal with strongest sources in deep surveys
 - · Deal with confusing sources near specific targets
 - Note some spectacular images have low dynamic range
 - Cygnus A, Cas A

QUALITY MEASURES

- Dynamic range:
 - Usually is ratio of peak to off-source rms
 - Easy to measure
 - A measure of the ability to detect weak features
 - Highest I am aware of as of 2004: ~500,000 on 3C84 with WSRT
- Fidelity:
 - Error of on-source features
 - Important for motion measurements, flux histories etc.
 - Hard to measure don't know the "true" sourceMainly good for simulations
- On-source errors typically much higher than off-source rms
- Highest dynamic ranges are achieved on simple sources

BASIC REQUIREMENTS FOR HIGH DYNAMIC RANGE IMAGING

- A way to view the problem: It must be possible to subtract the model from the data with high accuracy
- The model must be a good description of the sky
 - Typically clean components or MEM image
- Need very good calibration and edit
- · Deal with commonly ignored effects
 - Closure errors
 - Spurious correlation, RFI etc.
 - Finite bandwidth and sources with spatial variations in spectral index
 - Position dependent gains due to primary beam shape and pointing
 - Position dependent gains due to troposphere and ionosphere
 - 3D effects for wide fields
- Avoid digital precision effects (mostly a future issue)

- · A few individual bad points don't have much effect
- For typical data, phase errors are more important than amplitude errors
 - Example: a 5° phase error is equivalent to a 9% amplitude error
- Small systematic errors can have a big cumulative effect
- Nearly all editing should be station based
 - Most data problems are due to a problem at an antenna
 - Most clipping algorithms don't do this, which is a problem
 - Exceptions often relate to spurious correlation
 - RFI, DC offsets, pulse cal tones

CLOSURE ERRORS: WHY THEY MATTER

- Closure errors (*G_{ii}(t)*) are typically small
 - VLA continuum: of order 0.5%
 - VLBA and VLA line: less than 0.1%
 - Often smaller than data noise
- · But the harmful closure errors are systematic
 - All data points on a given baseline may have the same offset
- Small systematic errors mount up
 - Any data error is reduced in the image by about $1/\sqrt{N}$ where N is the number of independent values
 - For noise, each data point is independent and N is the number of visibilities, which is large
 - For many closure errors, N is only the number of baselines
 - $\sqrt{N_{bas}} \approx N_{ant}$

AVOIDING CLOSURE ERRORS (1) 14
 Use accurate delays and/or narrow frequency channels A delay error causes a phase slope with frequency Averaging can cause baseline dependent smearing - does not close Instrumental delays need to be removed accurately VLA continuum system needs accurately set delays on-line Delay changes with sky position, so wide fields need narrow channels Use sufficiently short time averages to avoid smearing Such smearing is baseline dependent - does not close Troposphere, lonosphere, Poor geometric model Offset positions in wide field imaging Well matched bandpasses Mismatched bandpasses cause closure errors Use bandpass calibration to reduce effect
Tenth Summer Synthesis Imaging Workshop, UNM, June 13-20, 2006

AVOIDING CLOSURE ERRORS (2)

Avoid spurious correlations at low total fringe rate

- Signals that can correlate: RFI, clipper offsets, pulse cal tones
 - VLA uses orthogonal Walsh functions to prevent correlation of clipper offsets. EVLA will use small frequency offsets
- Happens on short baselines, polar sources and near V=0
 - Can even be a problem for VLBI
- Quantization correction (Van Vleck correction)
 - At high correlation, ratio of true/measured correlation is nonlinear
 - This is a digital correlator effect for samples with few bits.
 - A concern when flux density >10% of SEFD
- Avoid or calibrate the effect of polarization impurity on the parallel hand data
 - May be current VLA limiting factor

- Avoid closure errors if possible by using appropriate observation parameters
- Baseline calibration on strong calibrator
 - After best self cal, assume time averaged residual on each baseline is a closure error
 - Need high SNR
 - Errors in the calibrator model can transfer to data
 - Most problematic for polar sources and snaphot calibrator observations
- Closure self-calibration
 - A baseline calibration on the target source
 - Depends on closure offsets being constant while UV structure is not
 - Will perfectly reproduce the model for snapshot
 - Some risk of matching the model even with long observations

LARGE FIELD IMAGING ISSUES

19

- Position dependent gain:
 - Primary beam
 - Scales with frequency
 - Varies with pointing
 - Squint: RCP & LCP beams offset for asymmetric antennas (VLA, VLBA)
 - Rotates with hour angle
 - Isoplanatic patch ionosphere or troposphere variations in position
- Bandwidth and time average smearing away from center
- May need to deal with confusing sources
 - Can be outside primary beam main lobe separate self-cal
 - Bigger problem as sensitivity increases (serious for SKA)
 - Serious problem at low frequencies
- Topic of active research in algorithms

