High Dynamic Range Imaging

Craig Walker

WHAT IS HIGH DYNAMIC RANGE IMAGING? AND WHY DO IT?

• Accurate imaging with a high brightness ratio.
 – High quality imaging of strong sources
 • Flux evolution of components
 • Motions of components
 • Detection of weak features
 – Imaging of weak sources near strong sources
 • Deal with strongest sources in deep surveys
 • Deal with confusing sources near specific targets
 – Note some spectacular images have low dynamic range
 • Cygnus A, Cas A
QUALITY MEASURES

- Dynamic range:
 - Usually is ratio of peak to off-source rms
 - Easy to measure
 - A measure of the ability to detect weak features
 - Highest I am aware of as of 2004: ~500,000 on 3C84 with WSRT

- Fidelity:
 - Error of on-source features
 - Important for motion measurements, flux histories etc.
 - Hard to measure – don’t know the “true” source
 - Mainly good for simulations

- On-source errors typically much higher than off-source rms
- Highest dynamic ranges are achieved on simple sources
EXAMPLE: 3C120 VLA 6cm

Science question 1:
Is the 4" knot superluminal?
Rate near core is 0.007 times VLA beam per year. Answer after 13 years – subluminal.

Science question 2:
Chandra sees X-rays in circled region. What is the radio flux density? Needed to try to deduce emission mechanism. Radio is seen, barely, in this image.

EXAMPLE: SKA SURVEY

Survey 1 square degree to 20 nJy rms in 12 hr with 0.1" beam
• Required dynamic range 10^7
 – There will typically be a ~200 mJy source in the field
 – Any long integration will have to deal with this problem
• Dense UV coverage required
 – About 10 sources per sq. deg. above 100 nJy.
 – Significant fraction of sky filled
• The EVLA will face the same issues, although to a lesser degree

Simulation from Windhorst et al. SKA memo which references Hopkins et al.

HST field size ($<<1$ deg)
BASIC REQUIREMENTS FOR HIGH DYNAMIC RANGE IMAGING

- A way to view the problem:
 It must be possible to subtract the model from the data with high accuracy
- The model must be a good description of the sky
 - Typically clean components or MEM image
- Need very good calibration and edit
- Deal with commonly ignored effects
 - Closure errors
 - Spurious correlation, RFI etc.
 - Finite bandwidth and sources with spatial variations in spectral index
 - Position dependent gains due to primary beam shape and pointing
 - Position dependent gains due to troposphere and ionosphere
 - 3D effects for wide fields
- Avoid digital precision effects (mostly a future issue)

UV COVERAGE

- Obtain adequate UV coverage to constrain source
 - If divide UV plane into cells of about 1/(source size), need more sampled cells than there are beam areas covering the source
- In other words, you need more constraints than unknowns
- As dynamic range increases, beam areas with emission usually does too.
- Avoid hidden distributions
 - Big UV holes
 - Missing short spacings
- Can do simple sources with poor UV coverage
- Example - 3C84 on the VLBA is a marginal case
EDITING CONSIDERATIONS

- A few individual bad points don’t have much effect
- For typical data, phase errors are more important than amplitude errors
 - Example: a 5° phase error is equivalent to a 9% amplitude error
- Small systematic errors can have a big cumulative effect
- Nearly all editing should be station based
 - Most data problems are due to a problem at an antenna
 - Most clipping algorithms don’t do this, which is a problem
 - Exceptions often relate to spurious correlation
 - RFI, DC offsets, pulse cal tones ….

SELF-CALIBRATION

- High dynamic range imaging requires self-calibration
 - Atmosphere limits dynamic range to about 1000 for nodding calibration
- High dynamic range is possible with just self-calibration
 - Nodding calibration is not required – get more time on-source
 - Typical VLBI case, but also true on VLA – see 3C120 example
 - But absolute position is not constrained – will match input model
- Many iterations may be needed
 - Most true for complex sources and/or poor UV coverage
 - May need to vary parameters to help convergence
 - Robustness, UV range, taper, solution interval etc.
CLOSURE ERRORS

- The measured visibility V'_{ij} for true visibility V_{ij} is:

$$V'_{ij} = g_{i}(t) \, g_{j}(t) \, G_{ij}(t) \, V_{ij}(t) + \varepsilon_{ij}(t) + \varepsilon_{ij}(t)$$

From the self-calibration chapter

- $g_{i}(t)$ is a complex antenna gain
 - Initially measured on calibrators
 - Improved with self-calibration
 - Depends on sky position for large fields (comparable to primary beam)

- $G_{ij}(t)$ is the portion of the gain that cannot be factored by antenna
 - These are the closure errors
 - The harmful variety are usually slowly or not variable

- $\varepsilon_{ij}(t)$ is an additive offset term
 - For example spurious correlation of RFI etc.
 - These are also closure errors – the gain cannot be factored by antenna
 - Usually ignored

- $\varepsilon_{ij}(t)$ is the thermal noise

CLOSURE ERRORS: EXTREME MISMATCHED BANDPASS EXAMPLE

The average amplitudes on each baseline cannot be described in terms of antenna dependent gains
CLOSURE ERRORS: WHY THEY MATTER

- Closure errors ($G_{ij}(t)$) are typically small
 - VLA continuum: of order 0.5%
 - VLBA and VLA line: less than 0.1%
 - Often smaller than data noise
- But the harmful closure errors are systematic
 - All data points on a given baseline may have the same offset
- Small systematic errors mount up
 - Any data error is reduced in the image by about $1/\sqrt{N}$ where N is the number of independent values
 - For noise, each data point is independent and N is the number of visibilities, which is large
 - For many closure errors, N is only the number of baselines
 - $\sqrt{N_{bas}} \approx N_{ant}$

AVOIDING CLOSURE ERRORS (1)

- Use accurate delays and/or narrow frequency channels
 - A delay error causes a phase slope with frequency
 - Averaging can cause baseline dependent smearing - does not close
 - Instrumental delays need to be removed accurately
 - VLA continuum system needs accurately set delays on-line
 - Delay changes with sky position, so wide fields need narrow channels
- Use sufficiently short time averages to avoid smearing
 - Such smearing is baseline dependent - does not close
 - Troposphere, Ionosphere, Poor geometric model
 - Offset positions in wide field imaging
- Well matched bandpasses
 - Mismatched bandpasses cause closure errors
 - Use bandpass calibration to reduce effect
AVOIDING CLOSURE ERRORS (2)

• Avoid spurious correlations at low total fringe rate
 – Signals that can correlate: RFI, clipper offsets, pulse cal tones
 • VLA uses orthogonal Walsh functions to prevent correlation of clipper offsets. EVLA will use small frequency offsets
 – Happens on short baselines, polar sources and near V=0
 • Can even be a problem for VLBI
• Quantization correction (Van Vleck correction)
 – At high correlation, ratio of true/measured correlation is non-linear
 – This is a digital correlator effect for samples with few bits.
 – A concern when flux density >10% of SEFD
• Avoid or calibrate the effect of polarization impurity on the parallel hand data
 – May be current VLA limiting factor

AVOIDING CLOSURE ERRORS (3)

• Avoid or calibrate instrumental errors
 – Example: Non-orthogonality of real and imaginary signals from Hilbert transformer in VLA continuum causes closure errors.
 • Raw phase dependent
 • Limits VLA continuum system dynamic range to about 20,000
 • Can hold constant by using array phasing
 • Calibrate on strong source
• Avoid poor coherence - causes closure errors
 – Keep calibration solution intervals short compared to coherence time
CALIBRATING CLOSURE ERRORS

• Avoid closure errors if possible by using appropriate observation parameters
• Baseline calibration on strong calibrator
 – After best self cal, assume time averaged residual on each baseline is a closure error
 – Need high SNR
 – Errors in the calibrator model can transfer to data
 • Most problematic for polar sources and snapshot calibrator observations
• Closure self-calibration
 – A baseline calibration on the target source
 – Depends on closure offsets being constant while UV structure is not
 – Will perfectly reproduce the model for snapshot
 – Some risk of matching the model even with long observations

IMAGING ISSUES FOR HIGH DYNAMIC RANGE

• Digital representation:
 – For CLEAN, negative components are required to represent an unresolved feature between cells
 • Don't stop CLEAN or self-cal at first negative
 – If possible, put bright points on grid cells
 – Need 5 or 6 cells per beam
 – 32 bit real numbers may not be adequate for SKA
• Use the most appropriate deconvolution algorithm
 – MEM for large, smooth sources
 – CLEAN for compact sources
 – NNLS best for partially resolved sources (avoid Briggs effect)
• Don't use CLEAN boxes that are too large
 – CLEAN can fit the noise with a few points and give spurious low rms
LARGE FIELD IMAGING ISSUES

- Position dependent gain:
 - Primary beam
 - Scales with frequency
 - Varies with pointing
 - Squint: RCP & LCP beams offset for asymmetric antennas (VLA, VLBA)
 - Rotates with hour angle
 - Isoplanatic patch – ionosphere or troposphere variations in position
- Bandwidth and time average smearing away from center
- May need to deal with confusing sources
 - Can be outside primary beam main lobe – separate self-cal
 - Bigger problem as sensitivity increases (serious for SKA)
 - Serious problem at low frequencies
- Topic of active research in algorithms

LIMITS IMPOSED BY VARIOUS ERRORS

Numbers are approximate maximum dynamic range
- Atmosphere without self-calibration: 1,000
- Closure errors VLA continuum: 20,000
- Closure errors VLA line or VLBA: >100,000
- Uncalibrated closure errors (after baseline calibration)
 - VLA: >200,000
 - WSRT: >400,000
- Thermal noise + maximum source strength > 10^6
 - Very few sources are bright enough to reach this limit with current instruments.
 - Bigger problem with EVLA and especially SKA
EXAMPLE: 3C273 VLA

B Array

Rotated so jet is vertical

From R. Perley
Synthesis Imaging
Chapter 13.

3C273 RESIDUAL DATA

Points above 1 Jy from correlator malfunction.

Points below 1 Jy mostly show closure errors
EXAMPLE: 3C273 CONTINUED

- Bad baseline removed
- Self-closure calibration
- Clip residuals

EXAMPLE: VALUE OF SHORT BASELINES

VLA A only
VLA A+B
WIDE FIELD EXAMPLE

• Sources in cluster Abell 2192
 – Continuum from HI line cube (z=0.2)
 • Provided by Marc Verheijen
• Bright source in first primary beam sidelobe
 – 39 mJy after primary beam attenuation
 – Self-cal on the confusing source
 – Subtract from UV data
 – Self-cal on primary beam sources

Confusing source outside primary beam near bottom
WIDE FIELD EXAMPLE: SAMPLE PRIMARY BEAMS

Beams from different antennas

Note variations far from center
The Briggs effect is a deconvolution problem with partially resolved sources

- Interpolation between longest baselines poor
- Not seen on unresolved sources
- Not seen on well resolved sources
- Seen with all common deconvolution algorithms (CLEAN, MEM ...)
- Dan developed the NNLS algorithm which works
 - Non-Negative Least Squares
 - Restricted to sources of modest size (computer limitations)
BRIGGS EFFECT EXAMPLE: 3C48 UV DATA

BRIGGS EFFECT EXAMPLE: 3C48 IMAGES
THE END