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WHAT IS HIGH DYNAMIC RANGE IMAGING?
AND WHY DO IT?

• Accurate imaging with a high brightness ratio.
– High quality imaging of strong sources

• Flux evolution of components
• Motions of components
• Detection of weak features

– Imaging of weak sources near strong sources
• Deal with strongest sources in deep surveys
• Deal with confusing sources near specific targets

– Note some spectacular images have low dynamic range
• Cygnus A, Cas A
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QUALITY MEASURES

• Dynamic range:  
– Usually is ratio of peak to off-source rms
– Easy to measure
– A measure of the ability to detect weak features
– Highest I am aware of as of 2004: ~500,000 on 3C84 with WSRT

• Fidelity:  
– Error of on-source features
– Important for motion measurements, flux histories etc.
– Hard to measure – don't know the "true" source

• Mainly good for simulations

• On-source errors typically much higher than off-source rms
• Highest dynamic ranges are achieved on simple sources
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WSRT 3C84 IMAGE

J. Noordam, LOFAR calibration memo.
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EXAMPLE:  3C120  VLA  6cm

Image properties:  Peak 3.12 Jy.  Off-source rms 12 
µJy/beam.  Dynamic Range 260000.  Knot at 4" is 
about 20 mJy/beam = 1/160 times core flux.

Science question 1:  
Is the 4" knot superluminal?  
Rate near core is 0.007 times 
VLA beam per year.  Answer 
after 13 years – subluminal.

Science question 2:  
Chandra sees X-rays in 
circled region.   What is 
the radio flux density? 
Needed to try to deduce 
emission mechanism.  
Radio is seen, barely, in 
this image.
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EXAMPLE: SKA SURVEY

Survey 1 square degree to 20 nJy rms 
in 12 hr with 0.1" beam

• Required dynamic range 107

– There will typically be a ~200 mJy 
source in the field

– Any long integration will have to 
deal with this problem

• Dense UV coverage required
– About 10 sources per sq. deg. 

above 100 nJy.
– Significant fraction of sky filled

• The EVLA will face the same 
issues, although to a lesser degree

Simulation from 
Windhorst et al. SKA 
memo which references 
Hopkins et al.

HST field
size 

(<<1deg)
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BASIC REQUIREMENTS FOR HIGH 
DYNAMIC RANGE IMAGING

• A way to view the problem:
It must be possible to subtract the model from the data with high 
accuracy

• The model must be a good description of the sky
– Typically clean components or MEM image

• Need very good calibration and edit
• Deal with commonly ignored effects

– Closure errors
– Spurious correlation, RFI etc.
– Finite bandwidth and sources with spatial variations in spectral index
– Position dependent gains due to primary beam shape and pointing
– Position dependent gains due to troposphere and ionosphere
– 3D effects for wide fields

• Avoid digital precision effects (mostly a future issue)
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UV COVERAGE

• Obtain adequate UV coverage to constrain source
– If divide UV plane into cells of about 1/(source size), need more 

sampled cells than there are beam areas covering the source

• Avoid hidden distributions
– Big UV holes
– Missing short spacings

• Can do simple sources 
with poor UV coverage

• Example - 3C84 on the 
VLBA is a marginal case

• In other words, you need more constraints than unknowns
• As dynamic range increases, beam areas with emission 

usually does too.
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EDITING CONSIDERATIONS

• A few individual bad points don't have much effect
• For typical data, phase errors are more important than 

amplitude errors
– Example: a 5° phase error is equivalent to a 9% amplitude error

• Small systematic errors can have a big cumulative effect
• Nearly all editing should be station based

– Most data problems are due to a problem at an antenna
– Most clipping algorithms don't do this, which is a problem
– Exceptions often relate to spurious correlation

• RFI, DC offsets, pulse cal tones ….
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SELF-CALIBRATION

• High dynamic range imaging requires self-calibration
– Atmosphere limits dynamic range to about 1000 for nodding 

calibration

• High dynamic range is possible with just self-calibration
– Nodding calibration is not required – get more time on-source
– Typical VLBI case, but also true on VLA – see 3C120 example 
– But absolute position is not constrained – will match input model

• Many iterations may be needed 
– Most true for complex sources and/or poor UV coverage
– May need to vary parameters to help convergence 

• Robustness, UV range, taper, solution interval etc.
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CLOSURE ERRORS

• The measured visibility V'ij for true visibility Vij is:
V'ij = gi(t) g*

j(t) Gij(t) Vij(t) + εij(t) + єij(t)
From the self-calibration chapter

– gi(t) is a complex antenna gain
• Initially measured on calibrators
• Improved with self-calibration
• Depends on sky position for large fields (comparable to primary beam)

– Gij(t) is the portion of the gain that cannot be factored by antenna
• These are the closure errors
• The harmful variety are usually slowly or not variable

– εij(t) is an additive offset term
• For example spurious correlation of RFI etc.
• These are also closure errors – the gain cannot be factored by antenna
• Usually ignored

– єij(t) is the thermal noise
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CLOSURE ERRORS:
EXTREME MISMATCHED BANDPASS EXAMPLE

The average 
amplitudes on each 
baseline cannot be 
described in terms 
of antenna 
dependent gains
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CLOSURE ERRORS: WHY THEY MATTER

• Closure errors (Gij(t)) are typically small
– VLA continuum: of order 0.5%
– VLBA and VLA line: less than 0.1%
– Often smaller than data noise

• But the harmful closure errors are systematic
– All data points on a given baseline may have the same offset

• Small systematic errors mount up
– Any data error is reduced in the image by about 1/√N where N is the 

number of independent values
– For noise, each data point is independent and N is the number of

visibilities, which is large
– For many closure errors, N is only the number of baselines

• √Nbas ≈ Nant
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AVOIDING CLOSURE ERRORS (1)

• Use accurate delays and/or narrow frequency channels
– A delay error causes a phase slope with frequency

• Averaging can cause baseline dependent smearing - does not close
– Instrumental delays need to be removed accurately

• VLA continuum system needs accurately set delays on-line
– Delay changes with sky position, so wide fields need narrow channels

• Use sufficiently short time averages to avoid smearing
– Such smearing is baseline dependent - does not close
– Troposphere, Ionosphere, Poor geometric model
– Offset positions in wide field imaging

• Well matched bandpasses
– Mismatched bandpasses cause closure errors
– Use bandpass calibration to reduce effect
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AVOIDING CLOSURE ERRORS (2)

• Avoid spurious correlations at low total fringe rate
– Signals that can correlate:  RFI, clipper offsets, pulse cal tones

• VLA uses orthogonal Walsh functions to prevent correlation 
of clipper offsets.  EVLA will use small frequency offsets

– Happens on short baselines, polar sources and near V=0
• Can even be a problem for VLBI

• Quantization correction (Van Vleck correction)
– At high correlation, ratio of true/measured correlation is non-

linear 
– This is a digital correlator effect for samples with few bits.
– A concern when flux density >10% of SEFD

• Avoid or calibrate the effect of polarization impurity on 
the parallel hand data
– May be current VLA limiting factor
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AVOIDING CLOSURE ERRORS (3)

• Avoid or calibrate instrumental errors
– Example: Non-orthogonality of real and imaginary signals from 

Hilbert transformer in VLA continuum causes closure errors. 
• Raw phase dependent
• Limits VLA continuum system dynamic range to about 20,000
• Can hold constant by using array phasing
• Calibrate on strong source

• Avoid poor coherence - causes closure errors
– Keep calibration solution intervals short compared to coherence 

time
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CALIBRATING CLOSURE ERRORS

• Avoid closure errors if possible by using appropriate 
observation parameters

• Baseline calibration on strong calibrator
– After best self cal, assume time averaged residual on each 

baseline is a closure error
– Need high SNR
– Errors in the calibrator model can transfer to data

• Most problematic for polar sources and snaphot calibrator 
observations

• Closure self-calibration
– A baseline calibration on the target source
– Depends on closure offsets being constant while UV structure 

is not
– Will perfectly reproduce the model for snapshot
– Some risk of matching the model even with long observations
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IMAGING ISSUES FOR HIGH DYNAMIC RANGE

• Digital representation: 
– For CLEAN, negative components are required to represent an 

unresolved feature between cells
• Don't stop CLEAN or self-cal at first negative 

– If possible, put bright points on grid cells 
– Need 5 or 6 cells per beam
– 32 bit real numbers may not be adequate for SKA

• Use the most appropriate deconvolution algorithm
– MEM for large, smooth sources
– CLEAN for compact sources
– NNLS best for partially resolved sources (avoid Briggs effect) 

• Don't use CLEAN boxes that are too large
– CLEAN can fit the noise with a few points and give spurious low rms
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LARGE FIELD IMAGING ISSUES

• Position dependent gain:
– Primary beam

• Scales with frequency
• Varies with pointing
• Squint: RCP & LCP beams offset for asymmetric antennas 

(VLA, VLBA)
• Rotates with hour angle 

– Isoplanatic patch – ionosphere or troposphere variations in 
position

• Bandwidth and time average smearing away from center 
• May need to deal with confusing sources

– Can be outside primary beam main lobe – separate self-cal
– Bigger problem as sensitivity increases (serious for SKA)
– Serious problem at low frequencies

• Topic of active research in algorithms
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LIMITS IMPOSED BY VARIOUS ERRORS

Numbers are approximate maximum dynamic range
• Atmosphere without self-calibration:  1,000
• Closure errors VLA continuum: 20,000
• Closure errors VLA line or VLBA: >100,000
• Uncalibrated closure errors (after baseline calibration)

– VLA:   >200,000
– WSRT:  >400,000

• Thermal noise + maximum source strength > 106

– Very few sources are bright enough to reach this limit with 
current instruments.  

• Bigger problem with EVLA and especially SKA
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EXAMPLE: 3C273 VLA

No self-cal 1st phase self-cal
2nd self-cal 

(amp and phase)

From 
R. Perley
Synthesis Imaging 
Chapter 13.

B Array

Rotated so jet 
is vertical
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3C273 RESIDUAL DATA

Points above 1 Jy from 
correlator malfunction.

Points below 1 Jy mostly 
show closure errors

1 Jy

Data - Model

UV Distance
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EXAMPLE: 3C273 CONTINUED

Bad baseline
removed

Self-closure
calibration Clip residuals
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EXAMPLE: VALUE OF SHORT BASELINES

VLA  A only VLA A+B
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WIDE FIELD EXAMPLE

• Sources in cluster Abell 2192
– Continuum from HI line cube (z=0.2)

• Provided by Marc Verheijen

• Bright source in first primary beam sidelobe
– 39 mJy after primary beam attenuation 
– Self-cal on the confusing source
– Subtract from UV data
– Self-cal on primary beam sources
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WIDE FIELD 
EXAMPLE: 
EXTERNAL 

CALIBRATION 
ONLY

Confusing source
outside primary 
beam near bottom
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WIDE FIELD EXAMPLE: SAMPLE PRIMARY BEAMS

Beams from different 
antennas

Note variations far 
from center
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WIDE FIELD 
EXAMPLE:  

SELF-CAL ON 
CONFUSING 

SOURCE
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WIDE FIELD 
EXAMPLE:

FINAL IMAGE

Confusing source 
subtracted
Self-cal on primary 
beam sources  
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The Briggs effect is a deconvolution problem with    
partially resolved sources

• Interpolation between longest baselines poor
• Not seen on unresolved sources
• Not seen on well resolved sources
• Seen with all common deconvolution algorithms 

(CLEAN, MEM …)
• Dan developed the NNLS algorithm which works

– Non-Negative Least Squares
– Restricted to sources of modest size (computer limitations)

BRIGGS EFFECT
Dan Briggs at the 1998 
school, shortly before his 
death while skydiving
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BRIGGS EFFECT EXAMPLE:  3C48 UV DATA
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BRIGGS EFFECT EXAMPLE: 3C48 IMAGES
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THE END


