

- 3
- The VLA is still the most flexible and sensitive radio telescope in the world. But...
 - it's over 30 years old: the first VLA antenna came on-line on 24 October 1975
 - major improvements are possible, at very little cost: keep the infrastructure (antennas, railroad track, buildings, ...), but replace the electronics

The EVLA: Order-of-Magnitude Improvements

		4

Parameter	VLA	EVLA	Factor
Sensitivity (1σ, 12 hours)	10 μJy	1 μJy	10
Maximum BW per polarization	0.1 GHz	8 GHz	80
# of frequency channels at max. bandwidth	16	16,384	1024
Maximum number of frequency channels	512	4,194,304	8192
Coarsest frequency resolution	50 MHz	2 MHz	25
Finest frequency resolution	381 Hz	0.12 Hz	3180
(Log) Frequency Coverage (1 – 50 GHz)	22%	100%	5

- EVLA cost is less than 1/4 the VLA capital investment
- No increase in basic operations budget

Bandwidth and Spectral Capabilities

- Combination of 2:1 bandwidth ratios and huge number of spectral channels
 - → instantaneous spectral indices, rotation measures, uv-coverage
 - →instantaneous velocity coverage (53,300 km/s vs. current 666 km/sec at 45 GHz)
 - →lines at arbitrary redshift
- Ridiculously flexible correlator
 - → 128 independently tunable sub-bands, vs. 2 now
 - → "zoom in" on the regions of interest, and leave one 2 GHz baseband for continuum

The Time Domain

ç

- Dynamic scheduling
 - →use weather efficiently
 - → respond to transients
- Fast time recording: initially 100 msec; 2.6 msec possible
- Pulsars: 1000 phase bins of 200 μsec width,
 15 μsec possible
 - → pulsar searches, timing, etc. with an interferometer!

Molecular Studies of High-Redshift Star-Forming Galaxies

9

- •Currently:
 - -50 MHz (z range of 0.001 at 50 GHz!)
 - -8 spectral channels
- → No z searches
- → Very poor spectral resolution
- → Resolve out wide lines, and add noise to narrow ones
- → Each line must be done independently (CO, HCN, HCO+, ...)

 $CO_{J=3-2}$ Carilli, Walter, & Z = 6.42 Lo Peak ~ 0.6 mJy

Molecular Studies of High-Redshift Star-Forming Galaxies

- •EVLA:
 - -8 GHz (z=1.4 to 1.9 for CO J=1-0;
 - z=3.8 to 4.8 for 2-1)
 - -16384 spectral channels (1 MHz res'n= 5.0 km/s)
- →200 km/s galaxy is 40 channels
- → Every line at once
- → Interferometry:
 - spatial res'n
 - •excellent spectral baselines

- Unbiased line surveys:
 - no dust obscuration
 - lots of random background sources
- HI, CO, HCN, HCO+, ...
- ⇒ evolution of cosmic neutral baryons from z=0 to 3
- ⇒ large-scale structure
- ⇒ estimates of CMB temperature

Star-Forming Galaxies at High Redshift

- Sensitive to:
 - **-Synchrotron** emission: AGN, SNR

- - -large range of redshift

Arp220 SED scaled to high redshifts.

13

3x8 hours on a typical spiral galaxy

In **one** observation of a galaxy:

- deepest radio continuum image yet made, with spectral index too
- image all (UC) HIIs & SNRs
- map HI emission & radio recombination lines
- measure magnetic field orientation, Faraday rotation, and Faraday depth
- absorption measurements against 100s of background sources
 - also rotation measures!
- simultaneous "blind" HI survey

Strong Gravity and Black Hole Accretion: The Galactic Center

VLA: 1 cm (Zhao)

VLT / NACO 1.6-3.5 microns

Strong Gravity and Black Hole Accretion: The Galactic Center

1

EVLA: the radio view

- 100s of pulsars with Porbit<100 yr
 - higher frequency to avoid dispersion due to ionized gas
 - image fidelity (SgrA*:pulsar = 1e6:1)
 - 10's mas astrometry
 - millisecond pulsar timing
- complete survey & monitoring of OH/IR stellar masers
 - detailed rotation curve
- · 3D motions of ionized gas
 - free-free emission + radio recombination lines
- · magnetic field structures and strength
- → Mass and *spin* of a supermassive black hole
 - deviations from elliptical orbits
- → Extended dark matter distribution
- → Tests of GR in ultra-strong regime
- → Detailed accretion estimates
- → Gas vs. stellar motions

Magnetic Fields in Galaxy Clusters

with X-rays, map magnetic fields & electron density in detail across entire, individual clusters

Rotation measures towards Hydra A (G. Taylor)

Residual RM towards 22 Abell clusters (T. Clarke)

- unambiguous rotation measures
- much less depolarization
- >100 sources per beam (vs. current 1-2) for scattering & polarization studies
- >20 RRMs per cluster for >80 clusters!

Galactic Black Holes: The Accretion/Outflow Connection

- Ubiquity of jets
- Monitoring
 - -continuous multi-freq. coverage
 - -work at 45 GHz → 50mas res'n
 - -triggering VLBI
- Polarization
- Going deeper
 - -faint source imaging
 - -typical rather than 20σ sources
 - -other disk states
 - -other source types (e.g., ULXs, low-luminosity XRBs, NS, etc.)

- Zeeman splitting of H recombination lines directly measures ISM magnetic fields
- Splitting is weak 2.8 Hz per μG → stack multple lines
- 2-4 GHz band: 31 recombination lines
 - Each typically 250 kHz wide → ~0.4% of the total band.
 - Need 10 kHz resolution
- So, either 400,000 channels...or zoom in with WIDAR!

- EVLA resolution provides images of:
 - gas density,
 - temperature,
 - metallicity,
 - B-fields (Zeeman)
- Sensitivity (12 hr, 5σ):
 - Δ Sline ~ 0.1 mJy (stacked, integral)
 - ΔB ~ 150 μGauss.
- Orion, W3, Gal. Center ...

Hundreds of Spectral Lines at once! 22 Sky Frequency Bands 414 lines (8 to 50 1-2 2-4 4-8 8-12 12-18 18-27 27-40 40-50 GHz GHz) 38 species **EVLA** offers Spatial resolution Spectral baseline stability T_A Full polarization (Zeeman splitting!) EVLA can observe 8 GHz at once – an average of 80 lines at 10 km/s velocity res'n (30 GHz) EVLA can "target" many (~60) lines at oncé TMC-1 (Nobeyama: Kaifu et al. 2004)

EVLA: Cost and Timescale

- Proposal (EVLA-I) submitted to NSF in 2000
 - Funding started in 2001 following NSB approval.
 - Completion by 2012
- A cooperative project:
 - \$57M from NSF, over eleven years
 - \$15M from Canada, (correlator, designed and built by HIA/DRAO)
 - \$2M from Mexico, and
 - \$8M from re-directed NRAO operational budget
- A second proposal (EVLA-II) was submitted in April 2004
 - Goal: to improve the spatial resolution by a factor 10
 - \$115M, over 7 years
 - The NSF recently (Dec 2005) declined to fund this proposal

EVLA Project Status

- 24
- Six antennas currently withdrawn from VLA service, and being outfitted with new electronics.
 - Two fully outfitted & available upon request
 - Two being outfitted with final electronics, and are being intensively tested. Available for astronomical use by late summer.
 - Two others in early stages of outfitting.
- Antennas will be cycled through the conversion process at a rate six per year, beginning in 2007.
- Except for special testing, no more than three antennas will be out of service at any one time during construction phase.

Major Future Milestones

25

Test prototype correlator

mid 2007

Four antenna test and verification system

Not available for science

Correlator installation and testing begins mid 2008

- Capabilities will rapidly increase until mid 2009.

Correlator Commissioning begins mid 2009

- VLA's correlator turned off at this time

- New correlator capabilities will be much greater at this time.

Last antenna retrofitted
 2010

Last receiver installed 2012

New Capabilities Timescale

- The old correlator will be employed until the new correlator achieves full 27-antenna capability – mid 2009.
- Full band tuning available starting next year
- Note also muchimproved spectral stability
- Limited dynamic scheduling has begun

27

Challenges: Data Processing

- Data rates
 - peak from correaltor backend: ~25 MB/s
 - 8-hour "peak" observation ~ 700 GB (average is factor 10 lower)
 - data for 1 year ~ 80 TB
- Analysis
 - data flagging
 - sources everywhere
 - full (wide!) bandwidth synthesis (must account for spectral index, pol'n, rotation measure, etc.)
 - high-fidelity imaging (10 mJy \Rightarrow 10⁴:1)

Challenges: Ease of Use

29

- Much more complex and capable system
 - correlator modes
 - "wide-open" bands
 - lots of data
- → How do we make this power available to multi-wavelength users?
 - · data volumes
 - "end-to-end" processing
 - imaging pipelines
 - readily accessible archive, NVO

EVLA Spin-offs

- Correlator for eMERLIN
- Renewed (international!) radio collaborations
 - common problems of data volume, deep imaging, etc.
- Centimeter/millimeter connection
 - similar timescales for EVLA & ALMA
 - similar techniques
 - comparable instruments, and complementary information on much shared science
- Opportunities as the VLA winds down
 - spectral line: e.g., deep HI images or surveys
 - time-dependent science: space telescopes, transient science, etc.
 - · Note Oct06 call for Large Proposals!

Challenges: Looking Ahead

31

- Higher resolution: how can we tie in the VLBA?
 - bring high bandwidth (= sensitivity) to the world array
- Higher sensitivity: more collecting area for spectral line studies (the Square Kilometer Array)
 - requires economies of scale, for the antennas, the feeds & receivers, the correlator, etc. etc.
 - the EVLA as a pathfinder

Challenges: Strengthening the US Community

- NSF funds radio astronomy through grants
 - budget is very tight compared to NASA
 - no direct tie to telescopes
 - unhealthy perception of competition between instruments (esp. NRAO) and science
- → Fabulous new instruments --- now we have to make sure they are used as fully as they can be!
 - · international collaboration
 - · obviously wonderful science
 - · make it easier to use
 - more direct ties to space instrumentation (cf. Chandra)
 - innovative approaches within NRAO

NRAO and You

- Staff support/collaboration
- These schools
- Travel support for US observers (NRAO and foreign telescopes)
- Page charges
- Paid sabbatical/summer visits
- Postdocs
 - Traveling & resident Jansky fellows
- Student support
 - GBT projects
 - grad students (2 mos.-2 years, full support)
 - undergraduates (Co-Op Program up to 1 semester/year; summer REU)
- · Aggressively pursuing other innovative programs
- At last, we will be hiring!

A New Era for Radio Astronomy

- · After a long dry spell, telescopes galore
 - GMRT, SMA, eVLBI
 - EVLA, ALMA, ATA, eMERLIN, LWA, LOFAR, Australian initiatives, LMT,
 ...
- Looming on the horizon: the Square Kilometer Array
- This is the perfect time to be a graduate student!
 - get in on the ground floor
 - influence "first science", software design, how the arrays operate
 - a unique opportunity to mix technology, software, and science