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Outline

• Introduction
• Inspecting visibility data
• Model fitting
• Some applications

– Superluminal motion

– Gamma-ray bursts
– Gravitational lenses
– The Sunyaev-Zeldovich effect
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Introduction

• Reasons for analyzing visibility data
• Insufficient (u,v)-plane coverage to make an image
• Inadequate calibration

• Quantitative analysis
• Direct comparison of two data sets
• Error estimation

Usually, visibility measurements are independent gaussian
variates

Systematic errors are usually localized in the (u,v) plane

• Statistical estimation of source parameters
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Inspecting Visibility Data

• Fourier imaging

• Problems with direct inversion
Sampling

Poor (u,v) coverage

Missing data
e.g., no phases (speckle imaging)

Calibration
Closure quantities are independent of calibration

Non-Fourier imaging
e.g., wide-field imaging; time-variable sources (SS433)

Noise
Noise is uncorrelated in the (u,v) plane but correlated in the image
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• Useful displays
– Sampling of the (u,v) plane

– Amplitude and phase vs. radius in the (u,v) plane
– Amplitude and phase vs. time on each baseline
– Amplitude variation across the (u,v) plane

– Projection onto a particular orientation in the (u,v) plane

• Example: 2021+614
– GHz-peaked spectrum radio galaxy at z=0.23
– A VLBI dataset with 11 antennas from 1987
– VLBA only in 2000

Inspecting Visibility Data
6

G. Taylor, Ninth Synthesis Imaging Summer School, June 15-22, 2004

Sampling of the (u,v) plane
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Visibility versus (u,v) radius
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Visibility versus time
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Amplitude across the (u,v) plane
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Projection in the (u,v) plane
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Properties of the Fourier transform

See, e.g., R. Bracewell, The Fourier Transform and its 
Applications (1965).

• Fourier Transform theorems
Linearity

Visibilities of components add (complex)

Convolution
Shift

Shifting the source creates a phase gradient across the (u,v) plane

Similarity
Larger sources have more compact transforms
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Fourier Transform theorems
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Simple models

Visibility at short baselines contains little 
information about the profile of the source.
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Trial model

By inspection, we can derive a simple model:
Two equal components, each 1.25 Jy, separated by about 6.8 
milliarcsec in p.a. 33º, each about 0.8 milliarcsec in diameter 
(gaussian FWHM)

To be refined later…
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Projection in the (u,v) plane
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• Antenna-based gain errors

• Closure phase (bispectrum phase)

• Closure amplitude

• Closure phase  and closure amplitude are unaffected by antenna gain errors
• They are conserved during self-calibration
• Contain (N–2)/N of phase, (N–3)/(N–1) of amplitude info
– Many non-independent quantities
– They do not have gaussian errors
– No position or flux info

Closure Phase and Amplitude: closure quantities
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Closure phase
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Model fitting

• Imaging as an Inverse Problem
• In synthesis imaging, we can solve the forward problem: given a sky 

brightness distribution, and knowing the characteristics of the instrument, 
we can predict the measurements (visibilities), within the limitations 
imposed by the noise.

• The inverse problem is much harder, given limited data and noise: the 
solution is rarely unique.

• A general approach to inverse problems is model fitting. See, e.g., Press 
et al., Numerical Recipes.

1. Design a model defined by a number of adjustable parameters.
2. Solve the forward problem to predict the measurements.
3. Choose a figure-of-merit function, e.g., rms deviation between model 

predictions and measurements.
4. Adjust the parameters to minimize the merit function.

• Goals:
1. Best-fit values for the parameters.
2. A measure of the goodness-of-fit of the optimized model.
3. Estimates of the uncertainty of the best-fit parameters.
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Model fitting
• Maximum Likelihood and Least Squares

– The model:

– The likelihood of the model (if noise is gaussian):

– Maximizing the likelihood is equivalent to minimizing chi-square (for 
gaussian errors):

– Follows chi-square distribution with N – M degrees of freedom. Reduced chi-
square has expected value 1.
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Uses of model fitting

• Model fitting is most useful when the brightness 
distribution is simple.
– Checking amplitude calibration

– Starting point for self-calibration 
– Estimating parameters of the model (with error estimates)
– In conjunction with CLEAN or MEM
– In astrometry and geodesy

• Programs
– AIPS UVFIT
– Difmap (Martin Shepherd)
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Parameters

• Example
– Component position: (x,y) or polar coordinates
– Flux density
– Angular size (e.g., FWHM)
– Axial ratio and orientation (position angle)

– For a non-circular component
6 parameters per component, plus a “shape”

This is a conventional choice:  other choices of parameters 
may be better!

(Wavelets; shapelets* [Hermite functions])
* Chang & Refregier 2002, ApJ, 570, 447
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Practical model fitting: 2021

• ! Flux (Jy) Radius (mas)  Theta (deg)  Major (mas)  Axial ratio   Phi (deg) T

• 1.15566      4.99484      32.9118     0.867594     0.803463  54.4823  1
• 1.16520      1.79539     -147.037     0.825078     0.742822     45.2283  1
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2021: model 2
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Model fitting 2021

• ! Flux (Jy) Radius (mas)  Theta (deg)  Major (mas)  Axial ratio   Phi (deg) T
• 1.10808      5.01177      32.9772     0.871643     0.790796  60.4327  1
• 0.823118      1.80865     -146.615     0.589278     0.585766     53.1916  1
• 0.131209      7.62679      43.3576     0.741253     0.933106  -82.4635  1
• 0.419373      1.18399     -160.136      1.62101     0.951732     84.9951  1
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2021: model 3
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Limitations of least squares

• Assumptions that may be violated
• The model is a good representation of the data

Check the fit

• The errors are gaussian
True for real and imaginary parts of  visibility
Not true for amplitudes and phases (except at high SNR)

• The variance of the errors is known
Estimate from Tsys, rms, etc.

• There are no systematic errors
Calibration errors, baseline offsets, etc. must be removed before or 

during fitting

• The errors are uncorrelated
Not true for closure quantities
Can be handled with full covariance matrix

30

G. Taylor, Ninth Synthesis Imaging Summer School, June 15-22, 2004

• At the minimum, the derivatives 
of chi-square with respect to the 
parameters are zero

• Linear case: matrix inversion.
• Exhaustive search: prohibitive with 

many parameters (~ 10M)
• Grid search: adjust each parameter by a
small increment and step down hill in search for minimum.
• Gradient search: follow downward gradient toward minimum, using 

numerical or analytic derivatives. Adjust step size according to
second derivative

– For details, see Numerical Recipes.

Least-squares algorithms
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Problems with least squares

• Global versus local minimum
• Slow convergence: poorly constrained model

Do not allow poorly-constrained parameters to vary

• Constraints and prior information
Boundaries in parameter space
Transformation of variables

• Choosing the right number of parameters: does 
adding a parameter significantly improve the fit?
Likelihood ratio  or F test: use caution

Protassov et al. 2002, ApJ, 571, 545
Monte Carlo methods
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• Find a region of the M-dimensional parameter space around the best fit 
point in which there is, say, a 68% or 95% chance that the true 
parameter values lie.

• Constant chi-square boundary: select the region in which 

• The appropriate contour depends on the required confidence level and 
the number of parameters estimated.

• Monte Carlo methods (simulated or mock data): relatively easy with fast 
computers

• Some parameters are strongly correlated, e.g., flux density and size of 
a gaussian component with limited (u,v) coverage.

• Confidence intervals for a single parameter must take into account 
variations in the other parameters (“marginalization”).

Error estimation
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Mapping the likelihood

Press et al., Numerical Recipes
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Applications: Superluminal motion

• Problem: to detect changes in component positions 
between observations and measure their speeds
– Direct comparison of images is bad: different (u,v) coverage, 

uncertain calibration, insufficient resolution
– Visibility analysis is a good method of detecting and 

measuring changes in a source: allows “controlled super-
resolution”

– Calibration uncertainty can be avoided by looking at the 
closure quantities: have they changed?

– Problem of differing (u,v) coverage: compare the same (u,v) 
points whenever possible

– Model fitting as an interpolation method
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Superluminal motion

• Example 1: Discovery of superluminal motion in 3C279 (Whitney et al., 
Science, 1971)

36

G. Taylor, Ninth Synthesis Imaging Summer School, June 15-22, 2004

Superluminal motion

1.55 ± 0.03 milliarcsec in 4 months: v/c = 10 ± 3 
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3C279 with the VLBA

Wehrle et al. 2001, ApJS, 133, 297
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Applications: Expanding sources

• Example 2: changes in the radio galaxy 2021+614 
between 1987 and 2000
– We find a change of 200 microarcsec so v/c = 0.18

– By careful combination of model-fitting and self-calibration, 
Conway et al. (1994) determined that the separation had 
changed  by 69 ± 10 microarcsec between 1982 and 1987, 
for v/c = 0.19 
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GRB030329

June 20, 2003

t+83 days

Peak ~ 3 mJy
Size 0.172 +/- 0.043 mas

0.5 +/- 0.1 pc
average velocity = 3c

Taylor et al. 2004

VLBA+Y27+GBT+EB+AR+WB = 0.11 km2
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GRB 030329

Proper motion limits

RA   =  -0.02 +/- 0.80 mas/yr
DEC = -0.44 +/- 0.63 mas/yr

motion < 0.28 masin 80 days
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GRB030329
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GRB030329 subtracted
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Applications: Gravitational Lenses

• Gravitational Lenses
– Single source, multiple images formed by intervening galaxy.
– Can be used to map mass distribution in lens.
– Can be used to measure distance of lens and H0: need redshift of lens 

and background source, model of mass distribution, and a time delay.
• Application of model fitting

– Lens monitoring to measure flux densities of components as a function of 
time.

– Small number of components, usually point sources.
– Need error estimates.

• Example: VLA monitoring of B1608+656 (Fassnacht et al. 1999, ApJ)
– VLA configuration changes: different HA on each day
– Other sources in the field
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VLA image of 1608
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1608 monitoring results

B – A = 31 days
B – C = 36 days
H0 = 59 ± 8 km/s/Mpc
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Applications: Sunyaev-Zeldovich effect

• The Sunyaev-Zeldovich effect
– Photons of the CMB are scattered to higher frequencies by hot electrons in 

galaxy clusters, causing a negative brightness decrement.
– Decrement is proportional to integral of electron pressure through the 

cluster, or electron density if cluster is isothermal.
– Electron density and temperature can be estimated from X-ray 

observations, so the linear scale of the cluster is determined.
– This can be used to measure the cluster distance and H0.

• Application of model fitting
– The profile of the decrement can be estimated from X-ray observations 

(beta model).
– The Fourier transform of this profile increases exponentially as the 

interferometer baseline decreases.
– The central decrement in a synthesis image is thus highly dependent on the 

(u,v) coverage.
– Model fitting is the best way to estimate the true central decrement.
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SZ profiles
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SZ images

Reese et al. astro-ph/0205350
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Summary

• For simple sources observed with high SNR, much can be learned 
about the source (and observational errors) by inspection of the
visibilities.

• Even if the data cannot be calibrated, the closure quantities are 
good observables, but they can be difficult to interpret.

• Quantitative data analysis is best regarded as an exercise in 
statistical inference, for which the maximum likelihood method is a 
general approach.

• For gaussian errors, the ML method is the method of least squares.
• Visibility data (usually) have uncorrelated gaussian errors, so analysis 

is most straightforward in the (u,v) plane.
• Consider visibility analysis when you want a quantitative answer (with 

error estimates) to a simple question about a source.
• Visibility analysis is inappropriate for large problems (many data 

points, many parameters, correlated errors); standard imaging 
methods can be much faster.


