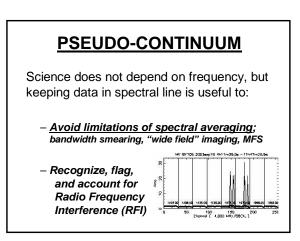


<u>"Spectral line VLBI"</u> <u>all VLBI = spectral line VLBI</u> Observed bandwidth at sky frequency Correlated with number of "lags" - time shifts - to be able to account for "defau", abarea of the shifts - to be able to account for "defau".

- to be able to account for "delay" change of
- phase with frequency due to – *Atmosphere (ionosphere/troposphere)*
- Individual telescope positions/electronics
- Clock/correlator model imperfections

WHAT IS SO SPECIAL?


- "Spectral line VLBI" is <u>not</u> fundamentally different from regular "continuum VLBI"
 Need to calibrate <u>delay</u> and <u>rate</u>
- "Spectral line VLBI" is <u>not</u> fundamentally different from connected element (e.g. VLA) spectral line observations
 Need to calibrate <u>bandpass</u>
- "Spectral line VLBI" is just a combination

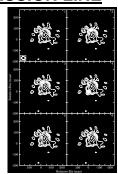
 Lectures by C.Walker, M.Rupen, J.Hibbard
 But with some nitty-gritty details
- <u>Requires to be ready before submitting proposal!</u>

SPECTRAL LINE

Two different interpretations:

- Science does <u>not</u> depend on frequency but **use** "spectral line" during processing "pseudo-continuum"
- Science depends on frequency "spectroscopy"
- Bandpass calibration becomes important!
- You have to choose correlator parameters

SPECTROSCOPY


Science depends on frequency:

- Emission lines
 - Object only emits/visible at certain frequencies
- Absorption lines
 - Object only visible at certain frequency because it is in front of absorbed background emission
- "Doppler lines"
- Emission/absorption line reveals velocity of object
 Line profiles may vary from <u>sub</u>-km/s emission
- line structure to <u>hundreds</u> of km/s wide, spatially distributed emission and absorption profiles

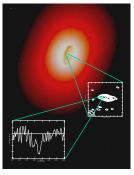
EXAMPLE EMISSION LINE

 Continuum source at 1667 MHz (contours)
 Six different small frequency bands
 Some frequencies show extra emission (white gray scale blobs)
 Extra emission from different locations in the continuum source

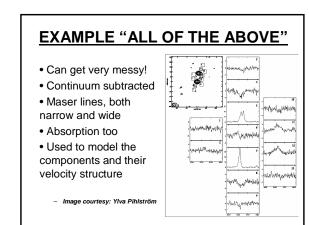
- Image courtesy: YIva Pihlström

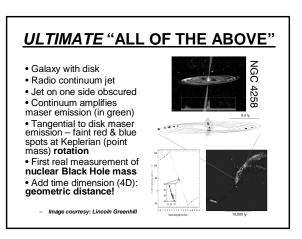
<text>

EXAMPLE ABSORPTION LINE


• Optical (HST) image of an elliptical galaxy with a **dust torus**

• Contains a radio continuum jet (inset)


• Dust torus absorbs radio continuum on **one** side of the jet only


• Geometry known, no need for optical data

- Image courtesy: Ylva Pihlström

<section-header> EXAMPLE "DOPPLER LINE" Different parts of the sources town different line profiles Dotted line: blue-shifted emission – moves toward us Solid line: red-shifted emission – moves away Gradient: fit to solid body totation, some kind of disk Image courtesy: Ylva Pihlström

THE DETAILS: SOURCES

- A limitation for detecting a source with VLBI is its brightness temperature, in particular for a spectral line source: $T_b \ge 10^9 \text{ K}$
 - Generally not neutral hydrogen, thermal molecules nor radio recombination lines
 - Usually only non-thermal sources: • Masers – OH, H₂O, SiO, CH₃OH, ...
 - Galactic as well as extra-galactic
 - · Background AGN HI and OH absorption
 - Galactic as well as extra-galactic
 - Human-made satellites and orbiters

DETAILS: PRE-PROPOSAL

Get your frequencies right!

- VLBI stations observe the same sky frequency, v_{obs}
- Doppler corrections: source *z*, *V*_{*Lo.s.*}, and *rest-frame* Also: *radio velocity definition* versus *optical velocity definition*
- Frequency coverage differs per VLBI station
- Select maximum and minimum frequency range Fiddle with time averaging to meet correlator restrictions

SOME RELATIONS

· Radio versus optical velocity definition: - Radio / Optical : V_{radio} / V_{optical} = v_{obs} / v_{rest}

• Doppler velocity/frequency relation: $- V_{l.o.s.} / c = (v_{rest}^2 - v_{obs}^2) / (v_{rest}^2 + v_{obs}^2)$

For velocity $V_{l.o.s.} \ll c$, redshift $z \ll 1$:

- Frequency shift [MHz] = $V_{l.o.s.}$ [km/s] . v [GHz] / 300
- Spectral resolution $_{[km/s]}$ = 0.3 $\Delta\nu$ $_{[kHz]}$ / ν $_{[GHz]}$
- Velocity range $_{[km/s]}$ = 300 BW $_{tot}$ $_{[MHz]}$ / ν $_{[GHz]}$
- Optical velocity [km/s] = 3x10⁵. z BEWARE!
- · Do not miss the line in the observed bandwidth

REST-FRAMES

Correct for	Amplitude	Rest frame
Nothing	0 km/s	Topocentric
Earth rotation	< 0.5 km/s	Geocentric
Earth/Moon barycenter	< 0.013 km/s	E/M Barycentric
Earth around Sun	< 30 km/s	Heliocentric
Sun/planets barycenter	< 0.012 km/s	SS Barycentric (~Helioc)
Sun peculiar motion	< 20 km/s	Local Standard of Rest
Galactic rotation	< 300 km/s	Galactocentric

PRE-PROPOSAL ADVICE

- Get your source's definition from the paper
 Check with other sources SIMBAD, NED, other papers
- · Redo your calculations at multiple occasions
 - Old programs exist (mostly FORTRAN); dopper/dopset
 Check definitions of <u>band edge</u> versus <u>band center</u>
 Some stations (VLA!) are more difficult to calculate

 - · Ask someone else (e.g. your co-I) to check your results
- · Check availability of receivers, known RFI
- · Restrictions; band edge or RFI/seasons, bandwidth filter
- · Keep these handy for when proposal gets approved

PRE-PROP: CORRELATION

All correlators have limitations in number of operations and data flow rate

- Spectral range: maximum bandwidth · Number of BBCs and their (total) bandwidth · May have to overlap BBCs for shape of filter
 - Spectral resolution: minimum width Number of channels/lags per BBC
- Field-of-view: correlator integration time · Bandwidth smearing - usually not the problem
- Time-average smearing usually the trade-off
- Volume of the data set may get GIGANTIC

AVAILABLE HELP

- Standard books, e.g. your own copy of
 Synthesis imaging in radio astronomy (II)
 ALSO look at chapters for VLBI as well as spectral line
- Web pages for documents, programs
 Observational status summaries
 Sensitivity calculators
- Run latest SCHED to try out your parameters
 General/rough preliminary VLBI schedule
 - Frequencies, station limitations
 Correlator parameters, data volume

At any stage you can ask for help!

But remember to ask well in time (prefer ~ weeks)

DETAILS: PRE-OBSERVING

Pl is responsible for a correct schedule

- Before scheduling, most proposals get a 'local contact' and email addresses to ask for help
- Follow (obey) the rules given by the scheduler
 Finish the schedule about two weeks in advance
 Do not deposit a schedule you know to be wrong
- If you need help, ask well (=weeks) in advance!
- Schedules only get "checked" if you specifically ask for it – don't rely on checker to do your work

DETAILS: SCHEDULING

Switch off pulse-cal!

- And maybe add a note in the cover letter
 Pulse-cal tone interferes with line source
- Include at least one bright "fringe-finder" (per 2 hours)
 To be used for "manual p-cal"
 - Calibrate "instrumental delay" on a continuum source
 - Spectral line source cannot be used for delay
- Include at least one (two) bright bandpass calibrator(s)
 - To be used for complex bandpass calibration
 - May be same continuum source as the "fringe-finder"
 Observe bandpass calibrator at the same sky frequency
 - Check that the source is <u>line-free</u> at these frequencies
- Use 2-bit sampling for more sensitivity on the line

SCHEDULING

- Use SCHED on UNIX/LINUX platforms
 - Latest version available from NRAO
 - Extensive (including some spectral line) documentation
 Very similar to scheduling a continuum observation
- Scheduling takes time! In particular spectral line obs.
- Include "fringe-finder" and bandpass calibrators
 Relatively strong, compact and <u>line-free</u> source
 - Disperse over observing run (not only at start)
 Apply target <u>Doppler tracking</u> to <u>all</u> calibrators
 - To observe calibrators at same sky frequency as target
 Saves trouble of fiddling with spectra afterwards
- Again: use the correct frequency. If in doubt ask for help

DETAILS: POST-OBSERVING

• Data reduction follows continuum observations (delay, rate, and phase-referencing, self-cal)

Differences:

- Data editing be sure to remove all RFI!
- Calibration "manual p-cal", bandpass
- Corrections Doppler shifts, self-cal on line
- Imaging and analysis data cubes, line(-free) channels, frequency and l.o.s. velocity axis

DELAY CALIBRATION

- Because pulse-cal is (hopefully) switched off, it cannot be used to calibrate the timeindependent "instrumental delay"
 - "manual p-cal" uses a short scan on a strong continuum source to calibrate
 "instrumental delay" (although small time dependencies may remain)
 - In AIPS, one uses FRING instead of PCAL
 - No big deal

BANDPASS CALIBRATION

Small corrections for the amplitude and phase for each individual data path

- Place where things can go wrong
- Place where people may differ in opinion; my view:
 - <u>Always</u> apply (complex) bandpass calibration
 <u>Two step spectral line bandpass calibration</u>
 <u>Amplitude bandpass</u> calibration
 - before Doppler corrections (skip for continuum observations) 2. <u>Complex bandpass</u> calibration (amplitude and **phase**)

after continuum (self-)calibration of the bandpass calibrators

BANDPASS AMPLITUDE

- Two different methods:
 - Strong line source, use autocorrelation spectra
 - Per antenna determine total power of the line source
 Compare with an on-off "template spectrum" of the line from your most sensitive and best calibrated antenna
 - Should be most accurate
 - Should be most accurate
 - Weak line source, use bandpass calibrator
 This step, correct for scalar amplitude only
- Calibrate amplitude before Doppler shift corrections

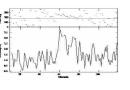
COMPLEX BANDPASS After final continuum calibration (fringe-fit, maybe self-cal) of the calibrators, good "cross-correlation continuum data" exists Use the "**bandpass calibrator**" to correct individual channels for small *residual phase* variations (and amplitude if step 1 omitted) The bandpass calibrator *must be calibrated* so its visibility phase (continuum source structure) is known - residuals are system

Bandpass calibrator must be line-free and without RFI
 Check your bandpass calibrator - cannot always anticipate
 Fringe-finder or delay/phase-reference calibrator alternatives

Reduces closure errors, also for continuum observations

ADDITIONAL CORRECTIONS

- Doppler shifts: if you did not use <u>Doppler tracking of</u> your line source on your bandpass calibrator, your spectra will shift during the observations due to Earth rotation. Recalculate with CVEL in AIPS – this shifts flux amongst frequency channels, thus you will want to do step 1 of the bandpass calibration (amplitude only) first
- Self-cal on line: you can use a bright spectral-line peak in one channel for a <u>one-channel self-cal</u> to correct antenna based temporal phase and amplitude fluctuations and apply the corrections to all channels (after applying the complex bandpass correction)


IMAGING AND ANALYSIS

- <u>Treat the same as non-VLBI spectral line data</u>
- Difference with continuum VLBI: 3D data cubes 2D sky coordinates (R.A. and Dec.)
 - "Channels", frequency (velocity) axis
 - Channels with and without line features
 Emission: line-free channels usually are "empty"
 - Absorption: continuum source in all channels
- Need to view 3D structures
 - Imaging/analysis is the same, but per channel
 - Extra programs for 3D display and analysis
 - Easy swap between frequency and I.o.s. velocity

CONTINUUM SUBTRACTION

- · Line-free channels define (empty) "continuum"
- May want to subtract from the visibility data to speed up imaging considerably
- Watch out for "features"
 Non-existing structures
 Absorption in emission
 Not line-free
 Display only

Also in image plane

CONCLUSION

- "Spectral line VLBI" is very similar to continuum VLBI and connected element spectral line observations and/or data sets
- Most of the differences *already start* with planning, proposing and scheduling, which is most of the work, and continue in calibration, imaging and data analysis
- Not much more difficult (really!)
- Help is abundant and "always" available