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Ninth Synthesis Imaging Summer School

Socorro, June 15-22, 2004

Mm-Wave Interferometry

Debra Shepherd & Claire Chandler

• Why a special lecture on mm 
interferometry?

– Everything about interferometry 
is more difficult at high 
frequencies

– Some problems are unique at 
mm/sub-mm wavelengths &  
affect the way observations are 
carried out and data are reduced
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Outline

1. Science at mm & sub-mm wavelengths
2. Problems unique to mm/sub-mm observations
3. Solutions:

• Correcting for atmospheric opacity
• Absolute gain calibration
• Tracking atmospheric phase fluctuations 
• Antenna and instrument constraints

4. Summary of existing and future mm/sub-mm arrays
5. Practical aspects of observing at high frequency with the VLA
6. Summary
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Why do we care about mm/submm?

• Unique science can be done at mm/sub-mm 
wavelengths because of the sensitivity to thermal 
emission from dust and molecular lines 

• Probe of cool gas and dust in:

• Molecular clouds
• Dust in dense regions
• Star formation in our Galaxy
• Proto-planetary disks
• Star formation in the high-redshift universe
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Science at mm/submm wavelengths: 
dust emission

In the Rayleigh-Jeans regime, hν � kT,
Sν = 2kTν2τνΩ Wm-2 Hz-1

c2

dust opacity, τν∝ ν2

so for optically-thin emission, flux density
Sν ∝ ν4;      TB ∝ ν2

� emission is brighter at higher frequencies
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Dust emission in our Galaxy

Vega debris disk simulation: PdBI & ALMA

Simulated ALMA imageSimulated PdBI image
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Star-forming galaxies in the early universe

(figure from A. Wootten)

3mm     850µm                  100µm

As galaxies get 
redshifted into mm 
& sub-mm  bands, 
dimming due to 
distance is offset 
by the brighter 
part of the 
spectrum being 
redshifted in.  
Hence, galaxies 
remain at 
relatively similar 
brightness out to 
high distances.
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Science at mm/sub-mm wavelengths: 
molecular line emission

• Most of the dense ISM is H2, but H2 has no 
permanent dipole moment � use trace molecules

• Lines from heavy molecules → mm
• Lighter molecules (e.g. hydrides) → sub-mm
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BIMA SONG 12CO(J=1-0) mosaic (Helfer et al. 2003)

M82 starburst
Red: optical emission
Blue: x-ray emission
Green: OVRO 12CO(J=1-0)
(Walter, Weiss, Scoville 2003)

Total 
Intensity

1st moment image

HH 211 molecular outflow (Chandler & Richer 2001) 
VLA red- & blue-shifted SiO(J=1-0) with 2.12 µm H2
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Plus: many more complex molecules (e.g. N2H+, CH3OH, 
CH3CH2CN, CH2OHCHO, CH3COOH, etc.)

– Probe kinematics, density, temperature

– Abundances, interstellar chemistry, etc…

– For an optically-thin line  Sνννν ∝ ν4444;    TB ∝ ν2222 (cf. dust)

Spectrum of molecular emission from Orion at 345 GHz

(Schilke et al. 1997)
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Problems unique to the mm/sub-mm

• Atmospheric opacity significant below 1cm: raises Tsys, 
attenuates source

– Opacity varies with frequency and altitude
– Gain calibration must correct for opacity variations 

• Atmospheric phase fluctuations
– Cause of the fluctuations: variable H2O
– Calibration schemes must compensate for induced loss of visibility 

amplitude (coherence) and spatial resolution (seeing) 

• Antennas
– Pointing accuracy measured as a fraction of the primary beam is 

more difficult to achieve: PB ~ 1.22 λ/D 
– Need more stringent requirements than at cm wavelengths for: 

surface accuracy & baseline determination

• Instrument stability
– Must increase linearly with frequency (e.g. delay lines, 

oscillators, etc…) 
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Problems, continued…

• Millimeter/sub-mm receivers (will not be discussed further)
– SIS mixers needed to achieve low noise characteristics
– Cryogenics cool receivers to a few K
– IF bandwidth

• Correlators (will not be discussed further)
– Need high speed (high bandwidth) for spectral lines:

∆V = 300 km s-1 � 1.4 MHz @ 1.4 GHz, 230 MHz @ 230 GHz
– Broad bandwidth also needed for sensitivity to thermal continuum and 

phase calibration, > GHz

• Limitations of existing and future arrays 
– Small field of view, need for mosaicing: FWHM of 10 m antenna @ 230 

GHz is ~ 30’’
– Limited uv-coverage, small number of elements (improved with 

CARMA, remedied with ALMA) 

~
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Atmospheric opacity

• Due to the troposphere (lowest layer 
of atmosphere):      h < ~7-10 km

• Temperature decreases with altitude: 
clouds & convection can be 
significant

• Dry Constituents of the troposphere: 
N2, O2, Ar, CO2, Ne, He, Kr, CH4, 
H2, N2O

• H2O: abundance is highly variable 
but is < 1% in mass, mostly in the 
form of water vapor

• Particulates (H2O & dust)

Troposphere

Stratosphere
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Models of atmospheric 
transmission from 0 to 1000 GHz 
for the ALMA site in Chile, and 
for the VLA site in New Mexico

�  Atmosphere transmission not a 
problem for λ > cm (most VLA 
bands)

= depth of H2O 
if converted to 
liquid

Troposphere opacity increases with frequency:

O2 H2O

Altitude: 2150 m

Altitude: 4600 m
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43 GHz 

VLA Q band

22 GHz 

VLA K band

Optical depth of the atmosphere at the VLA site

total 
optical 
depth

optical depth 
due to H2O

optical depth due 
to dry air
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• Consider a simple cascaded amplif ier system, with one component:

input Sin+N1 output = G(Sin+N1)

gain G

output noise relative to Sin, Nout = G N1/G = N1

• Now consider two components:

input Sin output =

N1 N2 G2[G1(Sin+N1)+N2]

…divide by G1G2 to find noise relative to Sin, then

Nin
eff = N1 + N2

G1

…and in general, Nin
eff = N1 + N2 + N3 + …

G1 G1G2

Effect of atmospheric noise on Tsys

Astro signal Noise N1 includes contributions 
from sky, ground pickup 
by telescope side-lobes, 
electronics noise …

�
If first amplifier has high 

gain, then system noise is set by 
the first amplifier.

Gain

G1 G2
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Now consider the troposphere as the first element of a cascaded 
amplifier system:

– Gatm = e−−−−ττττ (τ = atmospheric opacity; ‘negative gain’ )

– TB
atm = Tatm × (1 – e−−−−ττττ),          where Tatm = physical temperature        

of the atmosphere, ~ 300 K

atmosphere receiver

– “Effective’ ’ system noise temperature scaled to the top of the 
atmosphere (i.e., relative to the un-attenuated celestial signal) is:

Tsys
eff = e ττττ × [Tatm × (1-e−−−−ττττ) + Trec]*

* ignoring spillover terms, etc.

Atmospheric opacity, continued…

Receiver 
temperature

Emission from 
atmosphere

Atmospheric 
opacity

atm Rx
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Atmospheric opacity, continued…

• Example: typical 1.3 mm conditions at OVRO
– Zenith opacity, τ0 = 0.2,  at elevation = 30o � τ = 0.4
– Tsys(DSB) = eττττ [Tatm(1-e−−−−ττττ) + Trec] = 1.5 (100 + 50) = 225 K

– Dominated by the atmosphere (300 K)

– If receiver is double side band and sideband gain ratios are 
unity, then

Tsys(SSB) = 2 Tsys(DSB) = 450 K    - very noisy

So: atmosphere is noisy and is often the dominant 
contribution to Tsys; it is a function of airmassand 
changes rapidly, so need to calibrate often.
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Calibration of Tsys

• Systems are linear � output power, Pout = m × (Tinp + Tsys)
• If Pout = 0 then Tinp = −Tsys:

Tsys = (T2-T1) P1 - T1

(P2-P1)

Pout

Tinp
T1 T2

P1

P2

−Tsys

Unknown 
scale 
factor

Source 
‘ load’

above atm

Unknown 
system 
temp

Make 2 measurements of calibrated ‘ loads’ Tinp : 

T1 = 3 K, cosmic microwave background
(observe blank sky)

T2 = Tatm
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• At cm wavelengths loads T1 and T2 are the 3 K cosmic 
background radiation and a noise source with known noise 
temperature switched into the signal path

• At mm wavelengths we need two known loads above the 
atmosphere!

(1) 3 K cosmic background radiation
(2) Tatm obtained from a load placed in front of the feed.  If atmosphere 

is isothermal then Tambient ~ Tatm :

load Tamb → atmosphere      → Tambe−−−−ττττ + Tatm(1-e−−−−ττττ) = Tatm
loss  +  emission

cancel for Tamb = Tatm

A few percent error is made by assuming isothermal atmosphere.  
Once Tatm is known, you can calculate Tsys

eff, estimate τ and correct for it. 

Calibration of Tsys, continued… 20
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Absolute gain calibration

• There are no non-variable quasars in 
the mm/sub-mm for setting the absolute 
flux scale; instead, have to use:

• Planets: roughly black bodies of known 
size and temperature, e.g., Uranus @ 
230 GHz has Sν ~ 37 Jy, diameter ~ 4″

� If the planet is resolved by the array, have to use single-dish (total power) 
calibration

� If the planet is resolved by the primary beam, have to know its side-lobe 
pattern

� Sν is derived from models, can be uncertain by ~ 10%
• Stars: black bodies of known size

• e.g., Sun at 10 pc: Sν ~ 1.3 mJy @ 230 GHz, diameter ~ 1 mas
• Problem: very faint!  not possible for current arrays, useful for ALMA

3c273 flux density measured 
at OVRO at 3 mm for the last 
4 years 
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Atmospheric phase fluctuations

• At mm wavelengths variable atmospheric propagation delays 
are due to tropospheric water vapor (ionosphere is important 
for ν < 1 GHz)

• The phase change experienced by an electromagnetic wave is 
related to the refractive index of the air, n, and the distance 
traveled, D, by

φe = (2π/λ) × n × D

• For water vapor   n ∝ w
DTatm

so φe ≈ 12.6π × w    for Tatm = 270 K
λ

Where w = precipitable water 
vapor column
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Atmospheric phase fluctuations, continued…

• Variations in the amount of precipitablewater vapor 
therefore cause

– Pointing offsets, both predictable and anomalous

– Delay offsets

– Phase fluctuations, which are worse at shorter wavelengths, 
and result in

• Low coherence (loss of sensitivity)

• Radio “seeing”, typically 1-3″ at λ = 1 mm

Effect of structure in the water vapor content 
of the atmosphere on different scales.  Patches 
of air with different water vapor content affect 

the incoming wave front differently. 
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Atmospheric phase fluctuations, continued…

Phase noise as function of baseline length

The position of the break and the maximum noise are weather dependent.  
Kolmogorov turbulence theory → φrms =  K bαααα / λ [deg],

Where b = baseline length; α is a function of baseline length and depends 
on the width of the turbulent layer (1/3 – 5/6); λ = wavelength; and K = 
constant (~100 for ALMA, 300 for VLA)

“Root phase structure function”
(Butler & Desai 1999)
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Atmospheric phase fluctuations, continued…

Antenna-based phase solutions using a reference antenna within 200 m of 
W4 and W6, but 1000 m from W16 and W18:

Antennas 2 & 5 
are adjacent, 
phases track 
each other 
closelyAntennas 13 & 12 

are adjacent, 
phases track each 

other closely

VLA observations of 2 different sources at 22 GHz

�
Phase variations 

are tropospheric in 
origin, correlated on 
relevant timescales & 
baseline lengths

0423+418

0432+416
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VLA observations of the calibrator 2007+404 
at 22 GHz with a resolution of 0.1″:

one-minute snapshots at t = 0 and t = 59 min:

self-cal with t = 30min:       self-cal with t = 30sec:
�

Phase 
fluctuations with 
timescale ~ 30 s
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Phase fluctuations: loss of coherence

Coherence = (vector average/true visibility) = � V� / V0

For a given measured visibility, V = V0eiφφφφ

The effect of phase noise, φrms, on the measured visibility amplitude in a 
given averaging time: 
� V� = V0 × � eiφφφφ � = V0 × e−−−−φφφφ2rms/2 (assumes Gaussian phase fluctuations)

Example: if φrms = 1 radian (~60 deg), coherence = � V� = 0.60
V0

Imag.             thermal noise only             Imag.                    phase noise + thermal noise� low vector average

(high s/n)                 φrms

Real    Real
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Phase fluctuations: radio “ seeing”

�
V� = V0 × exp(−φ2

rms/2) = V0 × exp(−[K bαααα / λ]2/2)

- Measured visibility decreases with baseline length, b, (until break in 
root phase structure function)

- Source appears resolved, convolved with “seeing” function

Phase variations leads to position 
variations (source is smeared out).  

Point-source response function for 
various power-law models of the 
rms phase fluctuations, from 
Thompson, Moran, & Swenson 
(1986)

Root phase structure function

(Source size)
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• Consider observations at two frequencies, but the same 
resolution:

λ1, b1

λ2, b2 = b1(λ2/λ1) for the same resolution

then

(φrms)1 b1
α/λ1 λ2

1−−−−αααα

(φrms)2 b2
α/λ2 λ1

for example, α = 0.5, λ1 = 1 mm, λ2 = 6 cm:

(φrms)1mm

(φrms)6cm

Dependence of radio seeing on λλλλ

~ 8

= =
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� Phase fluctuations severe at mm/submm wavelengths, 
correction methods are needed

• Self-calibration: OK for bright sources that can be detected 
in a few seconds. 

• Fast switching: used at the VLA for high frequencies and 
BIMA for ~1 km baselines.  Choose fast switching cycle 
time, tcyc, short enough to reduce φrms to an acceptable level.  
Calibrate in the normal way. 

• Paired array calibration: divide array into two separate 
arrays, one for observing the source, and another for 
observing a nearby calibrator.  Note:

– Will not remove fluctuations caused by electronic phase noise

– Only works for arrays with large numbers of antennas (e.g., VLA,
ALMA)
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• Radiometry: measure fluctuations in TB
atm with a radiometer, 

use these to derive changes in water vapor column (w) and 
convert this into a phase correction using φe ≈ 12.6π × w

λ

Monitor: 22 GHz H2O line (CARMA, VLA)

183 GHz H2O line (CSO-JCMT, SMA, ALMA)

total power (IRAM, BIMA)

Phase correction methods (continued):

(Bremer et al. 1997)
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Examples of WVR phase correction:
22 GHz Water Line Monitor at OVRO

(Carpenter, Woody, & Scoville 1999)
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Examples of WVR phase correction: 
22 GHz Water Line Monitor at OVRO, continued…

“Before” and “after” images from Woody, Carpenter, & Scoville 2000

33

D. Shepherd, Synthesis Imaging Summer School, 21 June 2004

Examples of WVR phase correction: 
183 GHz Water Vapor Monitor at the CSO-JCMT

Phase fluctuations are reduced from 60° to 26° rms (Wiedner et al. 2001).
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• Pointing: for a 10 m antenna operating at 350 GHz the primary beam       
is ~ 18″

a 3″ error �  ∆(Gain) at pointing center = 5%

∆(Gain) at half power point = 22%

� need pointing accurate to ~1″

• Aperture efficiency, ηηηη: Ruze formula gives
η = exp(−[4πσrms/λ]2)

� for η = 50% at 350 GHz, need a surface accuracy, σrms, of 55µm

• Baseline determination: phase errors due to errors in the positions of the 
telescopes are given by

∆φ = 2π × ∆b × ∆θ
λ

Antenna requirements

∆θ = angular separation between 
source & calibrator

∆b = baseline error
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Antenna requirements, continued…

Note: ∆θ = angular separation between source and 
calibrator, can be > 20° in mm/sub-mm

� to keep ∆φ < ∆θ need ∆b < λ/2π
e.g., for λ = 1.3 mm need ∆b < 0.2 mm

Instrument stability
• Everything is more critical at shorter wavelengths.

– Transmission line for the local oscillator should be stable to « λ
– Needs to be temperature controlled
– Round-trip path measurements can be ~ 1 turn/day, but quicker 

at sunrise/sunset
� Calibrate instrumental phase every 20 to 30 mins
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Telescope altitude diam. No. A νmax

(feet) (m) dishes (m2) (GHz)

BIMA1 3,500               6 10 280 250
OVRO1 4,000 10 6 470 250
CARMA1 7,300         3.5/6/10 23 800 250
NMA 2,000             10 6 470 250
IRAM PdB 8,000 15 6 1060 250
JCMT-CSO 14,000 10/15 2 260 650
SMA 14,000 6 8 230 850
ALMA2 16,400 12 64 7200 950

1 BIMA+OVRO+Carlstrom 3.5 m Array at higher site = CARMA
2 First early science expected in Q3 2007, planned for full operation by 2012

Summary of existing and future mm/sub-mm arrays
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• Existing millimeter instruments are on sites at 1,000 to 
2,400 m altitude, with typically a few millimeters of 
precipitable H2O

• Primary beam (field of view) ~ 40″ (IRAM) to 120″
(BIMA) at 115 GHz, resolution 0.5″ to 2″.  

• Note:
– Small fields of view
– Not sensitive to extended emission on scales > ΩPB/3
– Mosaicing necessary for imaging even moderate-sized areas
– Small number of antennas make it difficult to build up good 

uv-coverage � not many independent pixels in the image 
plane

• Hence the need for CARMA & ALMA  
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Practical aspects of observing at high frequencies 
with the VLA

Note: details may be found at 
http://www.aoc.nrao.edu/vla/html/highfreq/

• Observing strategy: depends on the strength of your source
– Strong (≥ 0.1 Jy on the longest baseline for continuum observations, 

stronger for spectral line): can apply self-calibration, use short 
integration times; no need for fast switching

– Weak: external phase calibrator needed, use short integration times 
and fast switching, especially in A & B configurations

– Sources with a strong maser feature within the IF bandpass: monitor 
the atmospheric phase fluctuations using the maser, and apply the 
derived phase corrections to a continuum channel or spectral line 
channels; use short integration times, calibrate the instrumental phase 
offsets between the IFs being used every 30 mins or so
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Practical aspects, continued…

• Referenced pointing: pointing errors can be a significant 
fraction of a beam at 43 GHz

– Point on a nearby source at 8 GHz every 45-60 mins, more often 
when the az/el is changing rapidly.  Pointing sources should be 
compact with F8GHz ≥ 0.5 Jy

• Calibrators at 22 and 43 GHz
– Phase calibration: the spatial structure of water vapor in the 

troposphere requires that you find a phase calibrator < 3° from 
your source, if at all possible; for phase calibrators weaker than 
0.5 Jy you will need a separate, stronger source to track 
amplitude variations

– Absolute Flux calibrators: 3C48/3C138/3C147/3C286.  All are 
extended, but there are good models available for 22 and 43 GHz
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Practical aspects, continued…
• Opacity corrections and tipping scans

– Can measure the total power detected as a function of elevation,
which has contributions

Tsys = T0 + Tatm(1−eττττ0000a) + Tspill(a)
and solve for τ0.
– Or, make use of the fact that there is a good correlation between 

the surface weather and τ0 measured at the VLA (Butler 2002):

and apply this opacity correction using FILLM in AIPS
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Practical aspects, continued…

• If you have to use fast switching
– Quantify the effects of atmospheric phase fluctuations (both 

temporal and spatial) on the resolution and sensitivity of your 
observations by including measurements of a nearby point source 
with the same fast-switching settings: cycle time, distance to 
calibrator, strength of calibrator (weak/strong)

– If you do not include such a “check source” the temporal (but not 
spatial) effects can be estimated by imaging your phase calibrator 
using a long averaging time in the calibration

• During the data reduction
– Apply phase-only gain corrections first, to avoid de-correlation of 

amplitudes by the atmospheric phase fluctuations
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The Atmospheric Phase Interferometer at the VLA

Accessible from http://www.vla.nrao.edu/astro/guides/api
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Summary

• Atmospheric emission can dominate the system temperature
– Calibration of Tsys is different from that at cm wavelengths

• Tropospheric water vapor causes significant phase fluctuations
– Need to calibrate more often than at cm wavelengths

– Phase correction techniques are under development at all mm/sub-mm 
observatories around the world

– Observing strategies should include measurements to quantify the effect 
of the phase fluctuations

• Instrumentation is more difficult at mm/sub-mm wavelengths
– Observing strategies must include pointing measurements to avoid loss 

of sensitivity

– Need to calibrate instrumental effects on timescales of 10s of mins, or 
more often when the temperature is changing rapidly
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Rewards are ample!

BIMA Survey of Nearby Galaxies  - SONG: (Helfer et al. 2002)


