

• M	lost of the	dense	ISM is I	H_2 , but I	H_2 has no	
pe	ermanent	dipole r	noment	\Rightarrow use	trace molecul	les
• Li	ines from	heavy r	nolecul	$es \rightarrow m$	m	
• Li	ighter mo	lecules	(eg hv	drides) -	\rightarrow sub-mm	
	Enter mo	iccu.c.	0.5	arraco,	/ Sub	
	-					
7				141	2	
т	able 28-1. I	ow Order B	lotational T	ransitions of	Simple Heavy Mole	cules
т	able 28-1. I Molecule	ow Order B	J(2-1)	J(3-2)	Simple Heavy Mole $n_{crit}[J(1-0)]$ cm^{-3}	ecules
т	able 28-1. I Molecule	ow Order F J(1-0) GHz	lotational T J(2-1) GHz	ransitions of J(3-2) GHz	Simple Heavy Mole n _{crit} [J(1-0)] cm ⁻³	ecules
т	able 28-1. I Molecule	ow Order B J(1-0) GHz 115.271	Interioral T J(2-1) GHz 230.538	J(3-2) GHz 345.795	Simple Heavy Mole $n_{crit}[J(1-0)]$ cm^{-3} $10^2 - 10^3$	ecules
т	CO CO CS	J(1-0) GHz 115.271 48.991	totational T J(2-1) GHz 230.538 97.981	J(3-2) GHz 345.795 146.969	Simple Heavy Mole n _{crit} [J(1-0)] cm ⁻³ 10 ² - 10 ³ 10 ³ - 10 ⁴	ecules
т	CO CS HCN	J(1-0) GHz 115.271 48.991 88.631	lotational Th J(2-1) GHz 230.538 97.981 177.260	J(3-2) GHz 345.795 146.969 265.886	$\begin{array}{c} \mbox{Simple Heavy Mole} \\ \mbox{n}_{crit}[J(1-0)] \\ \mbox{cm}^{-3} \\ \mbox{10}^2 - 10^3 \\ \mbox{10}^3 - 10^4 \\ \mbox{10}^5 \\ \mbox{10}^5 \\ \mbox{10}^5 \end{array}$	ecules
т	able 28-1. I Molecule CO CS HCN HCO ⁺	ow Order B J(1-0) GHz 115.271 48.991 88.631 89.188	Lotational T J(2-1) GHz 230.538 97.981 177.260 178.375	ransitions of J(3-2) GHz 345.795 146.969 265.886 267.557	$\begin{array}{c} \underline{\text{Simple Heavy Mole}}\\ n_{crit}[J(1-0)]\\ cm^{-3}\\ 10^2 - 10^3\\ 10^3 - 10^4\\ 10^5\\ 10^5\\ 0^5\\ \end{array}$	<u>ecu</u> les

Summary	43
 Atmospheric emission can dominate the system temperature Calibration of T_{sys} is different from that at cm wavelengths 	
Tropospheric water vapor causes significant phase fluctuations Need to calibrate more often than at cm wavelengths	
 Phase correction techniques are under development at all mm/sub-mm observatories around the world 	
 Observing strategies should include measurements to quantify the effec of the phase fluctuations 	t
· Instrumentation is more difficult at mm/sub-mm wavelengths	
 Observing strategies must include pointing measurements to avoid loss of sensitivity 	
 Need to calibrate instrumental effects on timescales of 10s of mins, or more often when the temperature is changing rapidly 	
D. Skepherd, Synthesis Imaging Summer School. 21 June 2024	Tech

