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Spectral Line Observing I
Michael P. Rupen
NRAO/Socorro
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3

Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004

Definition and Change of Title

• Spectral line observations were originally 
observations of spectral lines (!)

• Nowadays folks talk about observing in “spectral line 
mode”�
Multi-channel Observations
…whatever the scientific rationale

• So: Spectral Line I � Multi-channel Observations
Spectral Line II � Spectral Line Observations

• In the future, 
all observations will be taken in this mode!
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Why you need frequency resolution:
spectral lines

• Narrow spectral 
features
– spectral lines: spin-flip 

(HI), recombination lines, 
rotational/vibrational
lines (CO, NH3, SO, …), 
masers

• particularly important in 
mm/submm (PdBI, 
SMA, ALMA)

– artificial signals: 
satellites, SETI

M33 VLA HI

Thilker, Braun, & Walterbos
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Why you need frequency resolution:
spectral lines

• Narrow spectral 
features
– spectral lines: spin-flip 

(HI), recombination lines, 
rotational/vibrational
lines (CO, NH3, SO, …), 
masers

• particularly important in 
mm/submm (PdBI, 
SMA, ALMA)

– artificial signals: 
satellites, SETI

HH211 PdBI CO

Gueth & Guilloteau 1999
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Why you need frequency resolution:
spectral lines

• Narrow spectral 
features
– spectral lines: spin-flip 

(HI), recombination lines, 
rotational/vibrational
lines (CO, NH3, SO, …), 
masers

• particularly important in 
mm/submm (PdBI, 
SMA, ALMA)

– artificial signals: 
satellites, SETI

Kemball & Diamond 1997

TX Cam VLBA SiO
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Why you need frequency resolution:
spectral lines

� requires resolutions as high as a few Hz (SETI, 
radar), over wide bandwidths (e.g., line searches, 
multiple lines, Doppler shifts)

� the ideal is many thousands of channels – up to 
millions…
• ALMA multiple lines: over 8 GHz, < 1km/s resolution~1 MHz

�
>8,000 channels

• EVLA HI absorption: 1-1.4 GHz, < 1km/s resolution ~4 kHz
�

>100,000 channels
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Why you need frequency resolution:
continuum observations

• Want maximum bandwidth for sensitivity:
rms goes as 1/sqrt(∆ν)

• BUT achieving this sensitivity also requires high 
spectral resolution:
– RFI (radio frequency interference)
– changes in the instrument with frequency
– changes in the atmosphere with frequency

– changes in the sources with frequency
– finding line-free zones
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RFI: Radio Frequency Interference

•Mostly a problem at low 
frequencies (<4 GHz)

•Getting worse

•Current strategy: avoid!
– works for narrow bandwidths (e.g., 
VLA: 50 MHz) or higher 
frequencies

•Can’t avoid for GHz bandwidths, 
low frequencies, or specific lines 
(e.g., OH)

�
frequency-dependent flagging

•e.g., VLA 74/330 MHz Current VLA, 1.2-
1.8 GHz
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RFI: Radio Frequency Interference

•Mostly a problem at low 
frequencies (<4 GHz)

•Getting worse

•Current strategy: avoid!
– works for narrow bandwidths (e.g., 
VLA: 50 MHz) or higher 
frequencies

•Can’t avoid for GHz bandwidths, 
low frequencies, or specific lines 
(e.g., OH)

�
frequency-dependent flagging

•e.g., VLA 74/330 MHz

•EVLA: 1.2-2 GHz in one go

Current VLA, 1.2-
1.8 GHz
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Instrument changes with frequency:
primary beam/field-of-view

• Primary beam: λ/D
• Band covers λ1 - λ2

�
PB changes by

λλλλ1/λλλλ2

• More important at 
longer wavelengths
(also more sources)
•VLA 20cm: 1.4 (1.04)

•VLA   2cm: 1.05
•EVLA 20-6cm: 2.0
•ALMA 1mm: 1.35 (1.03)

F. Owen

λ
2λ
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Instrument changes with frequency:
bandwidth smearing

• Interferometric baselines: 
B/λ

• Band covers λ1 - λ2
�

baseline changes by

λλλλ1/λλλλ2
�

uv smeared radially
�

more important in larger 
configurations

VLA-A 20cm: 1.04
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Instrument changes with frequency:
bandwidth smearing

• Interferometric baselines: 
B/λ

• Band covers λ1 - λ2
�

baseline changes by

λλλλ1/λλλλ2
�

uv smeared radially
�

more important in larger 
configurations

• Produces radial smearing 
in image

VLA-A 6cm: 1.01

18arcmin

11arcmin
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Instrument changes with frequency:
bandwidth smearing

• Interferometric baselines: 
B/λ

• Band covers λ1 - λ2
�

baseline changes by

λλλλ1/λλλλ2
�

uv smeared radially
�

more important in larger 
configurations

• Produces radial smearing 
in image

• Huge effect for EVLA

EVLA-A 20cm: 1.7
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Instrument changes with frequency:
bandwidth smearing

• Interferometric baselines: 
B/λ

• Band covers λ1 - λ2
�

baseline changes by

λλλλ1/λλλλ2�
uv smeared radially

�
more important in larger 

configurations

• Produces radial smearing 
in image

• Huge effect for EVLA
• Also a huge plus: 
multi-frequency synthesis

EVLA-A 20cm: 1.7
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Instrument changes with frequency:
calibration issues

• Responses of  antenna, 
receiver, feed change with 
frequency
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Instrument changes with frequency:
calibration issues

• Responses of  antenna, 
receiver, feed change with 
frequency

• Phase slopes (delays) due 
to incorrect clocks or 
positions
– prime source of non-closing 
errors (cf. high dynamic range 
imaging)

VLBA
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Atmosphere changes with frequency

• Opacity, phase (delay), 
and Faraday rotation 
change with frequency

– generally only important over 
very wide bandwidths, or near 
atmospheric lines

– an issue for ALMA
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Source changes with frequency

• Continuum is not flat 
(spectral index, spectral 
curvature), and spectral 
shape varies from source 
to source

• Polarized emission: 
Faraday rotation goes as 
λ2

• Annoyances…or scientific 
opportunities!
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Finding line-free zones:
spotting the ground under the forest

342 to 344 GHz with 
the SMA

Brogan & Shirley 2004
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The cost of frequency resolution

• Hardware
– LO system: requires flexible frequency tuning & tracking
– correlator: requires more lags � bigger, faster, more 

expensive 

• Software & data analysis
– amount of data scales as Nchan

– have to deal with all those complications (changing primary 
beam, uv-coverage, source structure/strength, etc.)

– seldom simply treat channels independently
• inefficient and slow: most effects vary smoothly with frequency
• spectral line: relies on channel-to-channel comparisons � want 

to put off non-linear algorithms (e.g., deconvolution) as long as 
possible

• continuum: interesting parameters (e.g., flux density 
distribution) are broad-band, and better determined by 
intelligently using all the data at once
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Tradeoffs in an imperfect world

• Frequency “chunks” (VLA: IFs; VLBA: BBCs) are not infinitely 
wide 

� separate processing and worries about overlaps
• Correlators are not infinite.  Roughly speaking, you can trade off:

– bandwidth
– number of channels
– number of frequency chunks
– number of polarization products (e.g., RR, LL, LR, RL)
with certain ancillary restrictions (e.g., how fast data can be written to 
disk)

• There are additional complications, depending on the cleverness 
of the correlator engineers (e.g., recirculation)

�
Programming the correlator is a nightmare

�
Choosing the mode you want can be painful
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Tradeoffs in an imperfect world:
HI in a group of galaxies at the VLA

• Bandwidth: >1000 km/s of signal plus line-free chunk
� > 4.7 MHz 

• Dual polarization for sensitivity (RR+LL)�
either 
• 1 IF pair @ 6.25 MHz with 98 kHz= 21 km/s channel sep’n, or
• 2 overlapping IF pairs @ 3.125 MHz (4 IF products total) with 48 
kHz= 10 km/s channel sep’n
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Spectral response

• Digital correlators work by a combination of cross-
correlation & Fourier transform

• We don’t measure an infinite number of Fourier 
component

– we don’t want to wait forever, so we truncate the lag spectrum
– we don’t have infinitely large correlators

• Truncated lag spectrum corresponds to multiplying 
true spectrum by box function�
Spectral response is (sampled) FT of box:

XF correlators:   VLA, EVLA, ALMA-I
sin πx/πx       22% sidelobes!

FX correlators: VLBA
(sin πx/πx)2 5% sidelobes
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Spectral response:
Gibbs ringing

• Produces “ringing” in 
frequency near sharp 
transitions: the Gibbs 
phenomenon

– narrow spectral lines (e.g., 
masers)

– band edges
– baseband (zero frequency)

• Noise equivalent bandwidth:     

1.0 ∆ν (XF)
FWHM:  1.2 ∆ν (XF)

26

Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004

Spectral response:
Gibbs ringing

• Possible cures:
– lots of channels (if available, and if you don’t care about the 

spectrum near sharp transitions)
– keep track of the spectral response during data 

reduction/analysis
– smooth the data in frequency (i.e., taper the lag spectrum)

• Most popular approach is Hanning smoothing:

– simple

– dramatically lowers sidelobes (below 3% for XF)
– noise equivalent bandwidth= 2.0 ∆ν (XF)

FWHM= 2.0 ∆ν (XF)
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Spectral response:
spectral smoothing

– often discard half the 
channels

– N.B. noise is still correlated!!!  
so further smoothing does 
not lower noise by sqrt(Nchan) 
(cf. Juan Uson)
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Calibration:
the bandpass

• Response (gain) of instrument as function of frequency
• Single dish

– mostly due to standing waves bouncing between the feed and 
the subreflector

– can be quite severe, and time variable

• Interferometer
– standing waves due to receiver noise vanish during cross-

correlation
– residual bandpass due to electronics, IF system, etc. is 

generally quite stable (exception: VLA ‘3 MHz’ ripple)
– atmosphere at mm/submm wavelengths
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Calibration:
VLA 1.4 GHz bandpass example
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Calibration:
splitting time & frequency

• overall gains can vary quite rapidly, but can be 
measured easily

• bandpass varies slowly, but requires good SNR in 
narrow channels

�
separate time and frequency dependence:

Gij(ν,t)= G’ij(t) Bij(ν,t)
�

bandpass is relative gain of antenna/baseline with 
frequency.  

• Often we explicitly divide the line data by the continuum, which
also removes atmospheric and source structure effects.
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Calibration:
measuring the bandpass

• Requires a strong source with known frequency 
dependence [currently, most schemes assume flat]

• Autocorrelation bandpasses
– amplitude only (don’t determine phase)
– vulnerable to usual single-dish problems

• Noise source (noise tubes)
– huge signal � allows baseline-based determinations

– don’t follow same signal path as astronomical signal
– difficult to remove all frequency structure from noise source

• Astronomical sources
– strong ones may not be available (esp. at high frequencies)
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Calibration:
measuring the bandpass

• Main difficulty currently is accurate measurement in 
narrow channels (low SNR)

• Various techniques for improving SNR:
– solve for antenna-based gains, as in classic self-calibration 

(AIPS: BPASS)
– assume bandpass is smooth: smooth the data or the solutions 

(AIPS: BPASS), or fit some functional form (e.g., polynomial) 
(AIPS: CPASS)

– Two-step approach (PdBI, ALMA): remove rapid frequency 
variations via noise source; then use astronomical sources for 
lower-order variations
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Calibration:
dividing by channel 0

Deriving the gains G’ij(t) Bij(ν,t) from the observed visibilities

Vobsij(ν,t) requires some model for the source Vij(ν,t):

Vij(ν,t)= G’ij(t) Bij(ν,t) Vobsij(ν,t)

If the source is a noise tube or a point-like calibrator, Vij(ν,t) is 
constant over time, and (hopefully!) known over frequency.

If not, we can still derive a model for the source visibilities based on 
the line-free channels.

In the simplest case that model is simply the average of the line-
free visibilities (called the Channel 0 data in AIPS)

Vmodij(t)/G’ij(t) = Σν, line-free Vobsij(ν,t)

and the bandpass Bij(ν,t) is chosen to make 

Vmodij(t)/G’ij(t) = Bij(ν,t) Vobsij(ν,t)

Note that this effectively removes both source structure & a 
changing atmosphere!
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Calibration:
dividing by channel 0

VLA
D config.
1.3cm
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Spectral line bandpass:
Get it right! 

• Because G’ij(t) and Bij(ν,t) are separable, multiplicative 

errors in G’ij(t) (including phase and gain calibration 
errors) can be reduced by subtracting structure in line-
free channels. Residual errors will scale with the peak 
remaining flux.

• Not true for Bij(ν,t). Any errors in bandpass calibration 
will always be in your data. Residual errors will scale 
like peak flux densities in your observed field.
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Special topics 

• Doppler tracking 
�

time-variable frequency, or correct 
after the fact

• n.b. gains are function of FREQUENCY, not velocity!

• Multiple sub-bands: best to overlap
• Double sub-bands (mostly mm)
• Tsys effects of strong lines
• Polarization bandpasses (there are strong frequency 
dependences!)
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The future 

• 8 GHz bandwidths, and 2:1 frequency coverage in a 
single observation

• Many thousands of channels
• Extreme frequencies (10s of MHz to THz)

�
every experiment will be a spectral line experiment:

�
remove RFI

�
track atmospheric & instrumental gain variations

�
minimize bandwidth smearing

�
allow multi-frequency synthesis, and spectral imaging

�
interferometric line searches/surveys

�
avoid line contamination

�
stack lines (e.g., RRL) to lower the noise

�
a whole new world!


