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Wide Field Imaging I: 
Non-Coplanar Arrays 

Rick Perley

Introduction

• From the first lecture, we have a general relation (the 
measurement equation) between the complex visibility 
V(u,v,w), and the sky intensity I(l,m):� �
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where
•This equation is valid for:

• spatially incoherent radiation from the far field, 
• phase-tracking interferometer
• narrow bandwidth

• Under certain conditions, a 2-d geometry can be 
applied, in which case the M.E. becomes a 2-d Fourier 
transform, and can be easily inverted to solve for I(l,m)

θcos1 22 =−−= mln

Heading toward 3-d

• For the VLA, the ‘certain condition’ is that the field of 
view be small.  

• For the VLA, at λ = 20 cm, in its A-configuration, this 
angle is about 10 arcmin.

• The problem worsens for lower frequencies, and 
smaller antennas.

• So – how do we handle this problem?

B/max λθ <

2

22

max

FWHM
2 D

BB

D
N D

λ
λ

λ
θ

θ =
��

����
=

��
����

=

The ‘3-D’ Formalism

• The general relationship is not a Fourier transform.  It 
thus doesn’t have an immediate inversion.  

• But, we can consider the 3-D Fourier transform of 
V(u,v,w), giving a 3-D ‘image volume’ F(l,m,n), and try 
relate this to the desired intensity, I(l,m).

• The mathematical details are straightforward, but 
tedious, and are given in detail on pp 384-385 in the 
White Book.  

The 3-D Image Volume

• We find that:
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Is related to the desired intensity, I(l,m),by:

This relation looks daunting, but in fact has a lovely 
geometric interpretation.

Interpretation

• The modified visibility V0(u,v,w) is simply the observed 
visibility with no ‘fringe tracking’.  

• It’s what we would measure if the fringes were held 
fixed, and the sky moves through them.  

• The bottom equation states that the image volume is 
everywhere empty (F(l,m,n)=0), except on a spherical 
surface of unit radius where, 

• The desired intensity, I(l,m)/n, is the value of F(l,m,n) on 
this unit surface 

• Note:  The image volume is not a physical space. It is a 
mathematical construct.  
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Benefits of a 3-D Fourier Relation

• The identification of a 3-D Fourier relation means that 
all  the relationships and theorems mentioned for 2-d 
imaging in earlier lectures carry over directly.  

• These include:
– Effects of finite sampling of V(u,v,w).
– Effects of maximum and minimum baselines.
– The ‘dirty beam’ (now a ‘beam ball’), sidelobes, etc.

– Deconvolution, ‘clean beams’, self-calibration.

• All these are, in principle, carried over unchanged, 
with the addition of a third dimension.

• But the real world makes this straightforward approach 
unattractive.  

Coordinates

• Where on the unit sphere are sources found?
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where  δ0 = the reference declination, and
 ∆α = the offset from the reference right ascension.

 However, where the sources appear on a 2-d plane is a 
 different matter.  

Illustrative Examples

Upper Left:  True Image.  Upper right:  Dirty Image.
Lower Left: After deconvolution.  Lower right:  After projection

Snapshots in 3D Imaging

• A snapshot VLA observations, seen in ‘3D’, creates ‘line beams’
(orange lines) , which uniquely project the sources (red bars) to 
the image plane (blue).  

• Except for the tangent point, the apparent locations of the 
sources move in time.

Apparent Source Movement

• As seen from the sky, the plane containing the VLA 
rotates through the day.

• This causes the ‘line-beams’ associated with the 
snapshot images to rotate.

• The apparent source position in a 2-D image thus rotates, 
following a conic section.  The loci of the path is:
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where Z = the zenith distance, and χ = parallactic angle.

Wandering Sources

• The apparent source motion is a function of zenith 
distance and parallactic angle, given by:
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where 
H = hour angle
δ = declination
φ = antenna latitude
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And around they go …

• On the 2-d (tangent) 
image plane, source 
positions follow conic 
sections. 

• The plots show the loci 
for declinations 90, 70, 
50, 30, 10, -10, -30, and 
-40.

• Each dot represents the 
location at integer HA.

• The path is a circle at 
declination 90.  

• The only observation 
with no error is at HA=0, 
δ=34.

How bad is it?

• In practical terms …

• The offset is (cos θ – 1) tan Z ~ (θ2 tan Z)/2
• At the antenna beam half-power, θ ~ λ/2D
• So the position error, ε, measured in synthesized 

beamwidths, (λ/B) at this distance can be written as

• For the VLA’s A-configuration, this offset error (in 
beamwidths) can be written:

ε ~ 5λm tan Z
• This is very significant at meter wavelengths!
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So, What can we do?

• There are a number of ways to deal with this problem.
1. Compute the entire 3-d image volume.  

• The most straightforward approach.
• But this approach is hugely wasteful in computing resources!

• The minimum number of ‘vertical planes’ needed is:  Bθ2/λ
• The number of volume pixels to be calculated is: 4B3θ2/λ3

• But the number of pixels actually needed is:  4B2/λ2

• So the fraction of effort which is wasted is 1 – λ/(Bθ2).
• And this about 90% at 20cm wavelength in A-configuration, for 

a full primary beam image.  

Deep Cubes!
• To give an idea of the scale of processing, the table below shows 

the number of ‘vertical’ planes needed to encompass the VLA’s 
primary beam.  

• For the A-configuration, each plane is at least 2048 x 2048.
• For the NMA, it’s at least 16384 x 16384!
• And one cube would be needed for each spectral channel.
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11241111020cm
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2723682252250400cm
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Polyhedron Imaging

• The wasted effort is in computing pixels we don’t 
need.  

• The polyhedron approach approximates the unit 
sphere with small flat planes, each of which stays 
close to the sphere’s surface.  

For each subimage, 
the entire dataset must be 

phase-shifted, and the (u,v,w) 
recomputed for the new plane.

facet

Polyhedron Approach, (cont.)

• How many facets are needed?  
• If we want to minimize distortions, the plane mustn’t 

depart from the unit sphere by more than the 
synthesized beam, λ/B.  Simple analysis (see the 
book) shows the number of facets will be:

Nf ~ 2λB/D2

or twice the number needed for 3-D imaging.  
• But the size of each image is much smaller, so the 

total number of cells computed is much smaller.  
• The extra effort in phase computation and (u,v,w) 

rotation is more than made up by the reduction in the 
number of cells computed.  

• This approach is the current standard.  



4

Polyhedron Imaging

• Procedure is then:
– Determine number of facets, and the size of each.
– Generate each facet image, rotating the (u,v,w)  and phase-

shifting the phase center for each.
– Jointly deconvolve the set.  The Clark/Cotton/Schwab 

major/minor cycle system is well suited for this.
– Project the finished images onto a 2-d surface.  

• Added benefit of this approach:
– As each facet is independently generated, one can imagine 

a separate antenna-based calibration for each.
– Useful if calibration is a function of direction as well as time.
– This is needed for meter-wavelength imaging.  

W-Projection

• Although the polyhedron approach works well, it is 
expensive, and there are annoying boundary issues –
where the facets overlap.

• The facet approach re-projects the dataset for each 
sub-image direction.  Is it possible to project the data 
onto a single (u,v) plane, accounting for all the 
necessary phase shifts?

• Answer is YES!   Tim Cornwell has developed a new 
algorithm, termed ‘w-projection’, to do this.  

• Available only in AIPS++, this approach permits a 
single 2-d image/deconvolution, and eliminates the 
annoying edge effects which accompany re-
projection.  

W-Projection
• Each visibility, at location (u,v,w) is mapped to the w=0 plane, with a 

phase shift proportional to the distance.  
• Each visibility is mapped to ALL the points lying within a cone whose 

full angle is the same as the field of view of the desired map – ∼2λ/D 
for a full-field image.  

• Area in the base of the cone is ~4λ2w2/D2 < 4B2/D2.   Number of cells 
on the base which ‘receive’ this visibility is ~ 4λ4w0

2/D4 < 4λ2B2/D4.

w

u

u0,w0

u0

u1,v1

~2λ/D

~2λw0/D

W-Projection

• The phase shift for each visibility onto the w=0 plane 
is in fact a Fresnel diffraction function.  

• Each 2-d cell receives a value for each observed 
visibility within an (upward/downwards) cone of full 
angle θ < λ/D.  

• In practice, the data are non-uniformly vertically 
gridded – speeds up the projection.  

• There are a lot of computations, but they are done 
only once.  

• Spatially-variant self-cal can be accommodated (but 
hasn’t yet).  

An Example – without ‘3-D’ Procesesing Example – with 3D processing


