

Deep Cubes!										
 To give an idea of the scale of processing, the table below shows the number of 'vertical' planes needed to encompass the VLA's primary beam. For the A-configuration, each plane is at least 2048 x 2048. For the NMA, it's at least 16384 x 16384! And one cube would be needed for each spectral channel. 										
	λ	NMA	Α	в	С	D	Е			
	400cm	2250	225	68	23	7	2			
	90cm	560	56	17	6	2	1			
	20cm	110	11	4	2	1	1			
	6cm	40	4	2	1	1	1			
	2cm	10	2	1	1	1	1			
	1.3cm	6	1	1	1	1	1			
TELO	Assessed	ties, inc						New Mexico Tech		

Polyhedron Imaging						
 Procedure is then: Determine number of facets, and the size of each. Generate each facet image, rotating the (u,v,w) and phaseshifting the phase center for each. Jointly deconvolve the set. The Clark/Cotton/Schwab major/minor cycle system is well suited for this. Project the finished images onto a 2-d surface. Added benefit of this approach: As each facet is independently generated, one can imagine a separate antenna-based calibration for each. Useful if calibration is a function of direction as well as time. This is needed for meter-wavelength imaging. 						
New Mexico Tech						

W-Projection					
 The phase shift for each visibility onto the was is in fact a Fresnel diffraction function. 	=0 plane				
 Each 2-d cell receives a value for each observisibility within an (upward/downwards) cone angle θ < λ/D. 	erved e of full				
 In practice, the data are non-uniformly vertically gridded – speeds up the projection. 					
 There are a lot of computations, but they are only once. 	e done				
 Spatially-variant self-cal can be accommoda hasn't yet). 	ted (but				
	New Mexico Tech				

