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Heading toward 3-d

» For the VLA, the ‘certain condition’ is that the field of

view be small.
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» For the VLA, at A = 20 cm, in its A-configuration, this
angle is about 10 arcmin.

» The problem worsens for lower frequencies, and
smaller antennas.
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* So — how do we handle this problem?

The 3-D Image Volume

* We find that:
F(,mn) = ﬂjvo (u, v, w)exp[ 27 (ul +vm+wn)]dudvdw
where

Vo(u,v,w) = exp(-275w) V (u, v, w)

Is related to the desired intensity, I(I,m), by:

F(I,m,n)=%d(m—1)

This relation looks daunting, but in fact has a lovely
geometric interpretation.

Introduction

« From the first lecture, we have a general relation (the
measurement equation) between the complex visibility
V(u,v,w), and the sky intensity 1(I,m):

V(u,v,w) = ”I (1, m) exp{—27iul +vm+w(n-1)]} didm/n

where n:\l1—|2—mz =cosé@
*This equation is valid for:
« spatially incoherent radiation from the far field,
* phase-tracking interferometer
* narrow bandwidth
« Under certain conditions, a 2-d geometry can be
applied, in which case the M.E. becomes a 2-d Fourier
transform, and can be easily inverted to solve for I(l,m)

The ‘3-D’ Formalism

« The general relationship is not a Fourier transform. It
thus doesn’t have an immediate inversion.

« But, we can consider the 3-D Fourier transform of
V(u,v,w), giving a 3-D ‘image volume’ F(I,m,n), and try
relate this to the desired intensity, I(I,m).

« The mathematical details are straightforward, but
tedious, and are given in detail on pp 384-385 in the
White Book.

Interpretation

» The modified visibility V(u,v,w) is simply the observed
visibility with no ‘fringe tracking’.

« It's what we would measure if the fringes were held

fixed, and the sky moves through them.

The bottom equation states that the image volume is

everywhere empty (F(l,m,n)=0), except on a spherical

surface of unit radius where, [2+m?+n?=1

The desired intensity, 1(I,m)/n, is the value of F(I,m,n) on

this unit surface

Note: The image volume is not a physical space. It is a
mathematical construct.




Benefits of a 3-D Fourier Relation

The identification of a 3-D Fourier relation means that

all the relationships and theorems mentioned for 2-d

imaging in earlier lectures carry over directly.

These include:

— Effects of finite sampling of V(u,v,w).

— Effects of maximum and minimum baselines.

— The ‘dirty beam’ (now a ‘beam ball’), sidelobes, etc.

— Deconvolution, ‘clean beams’, self-calibration.

« All these are, in principle, carried over unchanged,
with the addition of a third dimension.

« But the real world makes this straightforward approach

unattractive.

Coordinates

* Where on the unit sphere are sources found?

| =cosdsinAa
m=sindcosd, —cosdsind, cosAa
n=sindsingd, +cosd cosd cosAa

where §, = the reference declination, and
Aa = the offset from the reference right ascension.

However, where the sources appear on a 2-d plane is a
different matter.

Illustrative Examples

Upper Left: True Image. Upper right: Dirty Image.
Lower Left: After deconvolution. Lower right: After projection
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Snapshots in 3D Imaging

« A snapshot VLA observations, seen in ‘3D’, creates ‘line beams’
(orange lines) , which uniquely project the sources (red bars) to
the image plane (blue).

« Except for the tangent point, the apparent locations of the
sources move in time.

Apparent Source Movement

« As seen from the sky, the plane containing the VLA
rotates through the day.

« This causes the ‘line-beams’ associated with the
snapshot images to rotate.

« The apparent source position in a 2-D image thus rotates,
following a conic section. The loci of the path is:

I'=1 +(\/1—I2 -’ —1)tanZsin)(
m :m—(\/l—l2 -m? —1)taanosX

where Z = the zenith distance, and x = parallactic angle.

Wandering Sources

« The apparent source motion is a function of zenith
distance and parallactic angle, given by:
cos¢gsinH
singcosd —cos@sind cosH
C0SZ =sin@sin 0 +cos@coso cosH

tan y =

where
H = hour angle
4 = declination
@ = antenna latitude




And around they go ...

« Onthe 2-d (tangent)
image plane, source
positions follow conic
sections.

« The plots show the loci
for declinations 90, 70,
50, 30, 10, -10, -30, and
-40.

« Each dot represents the
location at integer HA.

« The path is acircle at
declination 90.

« The only observation
with no error is at HA=0,
3=34.

How bad is it?

In practical terms ...
The offset is (cos 6 — 1) tan Z ~ (62tan Z)/2
At the antenna beam half-power, 6 ~A/2D

So the position error, €, measured in synthesized
beamwidths, (A\/B) at this distance can be written as

_ /B
~ 8D?
For the VLA’s A-configuration, this offset error (in
beamwidths) can be written:

e~5\,tanZ
This is very significant at meter wavelengths!

£ tanZ

So, What can we do?

« There are a number of ways to deal with this problem.

1. Compute the entire 3-d image volume.
« The most straightforward approach.
< But this approach is hugely wasteful in computing resources!
« The minimum number of ‘vertical planes’ needed is: B82/A
« The number of volume pixels to be calculated is: 4B362/A3
« But the number of pixels actually needed is: 4B2/A?
« So the fraction of effort which is wasted is 1 — A/(B8?.

« And this about 90% at 20cm wavelength in A-configuration, for
a full primary beam image.

Deep Cubes!

To give an idea of the scale of processing, the table below shows
the number of ‘vertical’ planes needed to encompass the VLA’s
primary beam.

For the A-configuration, each plane is at least 2048 x 2048.
For the NMA, it's at least 16384 x 16384!
And one cube would be needed for each spectral channel.
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Polyhedron Imaging

« The wasted effort is in computing pixels we don’t
need.

« The polyhedron approach approximates the unit
sphere with small flat planes, each of which stays

close to the sphere’s surface.
facet

For each subimage,
the entire dataset must be
phase-shifted, and the (u,v,w)
recomputed for the new plane.

Polyhedron Approach, (cont.)

How many facets are needed?
If we want to minimize distortions, the plane mustn't
depart from the unit sphere by more than the
synthesized beam, A/B. Simple analysis (see the
book) shows the number of facets will be:
N; ~ 2\B/D?

or twice the number needed for 3-D imaging.
But the size of each image is much smaller, so the
total number of cells computed is much smaller.
The extra effort in phase computation and (u,v,w)
rotation is more than made up by the reduction in the
number of cells computed.
This approach is the current standard.




Polyhedron Imaging

« Procedure is then:
— Determine number of facets, and the size of each.

— Generate each facet image, rotating the (u,v,w) and phase-
shifting the phase center for each.

— Jointly deconvolve the set. The Clark/Cotton/Schwab
major/minor cycle system is well suited for this.

— Project the finished images onto a 2-d surface.

« Added benefit of this approach:

— As each facet is independently generated, one can imagine
a separate antenna-based calibration for each.

— Useful if calibration is a function of direction as well as time.

— This is needed for meter-wavelength imaging.

W-Projection

Although the polyhedron approach works well, it is
expensive, and there are annoying boundary issues —
where the facets overlap.

The facet approach re-projects the dataset for each
sub-image direction. Is it possible to project the data
onto a single (u,v) plane, accounting for all the
necessary phase shifts?

Answer is YES! Tim Cornwell has developed a new
algorithm, termed ‘w-projection’, to do this.

Available only in AIPS++, this approach permits a
single 2-d image/deconvolution, and eliminates the
annoying edge effects which accompany re-
projection.

W-Projection

« Each visibility, at location (u,v,w) is mapped to the w=0 plane, with a
phase shift proportional to the distance.

« Each visibility is mapped to ALL the points lying within a cone whose
full angle is the same as the field of view of the desired map — [R2A/D
for a full-field image.

« Areain the base of the cone is ~4A?w?/D? < 4B?/D2.  Number of cells
on the base which ‘receive’ this visibility is ~ 4A\*w,2/D* < 4\2B2/D*.
w
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W-Projection

The phase shift for each visibility onto the w=0 plane
is in fact a Fresnel diffraction function.

Each 2-d cell receives a value for each observed
visibility within an (upward/downwards) cone of full
angle 6 < A/D.

In practice, the data are non-uniformly vertically
gridded — speeds up the projection.

There are a lot of computations, but they are done
only once.

Spatially-variant self-cal can be accommodated (but
hasn't yet).

An Example — without ‘3-D’ Procesesing

Example — with 3D processing




