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Spectral Line II:
Calibration and Analysis

« Bandpass Calibration
» Flagging

¢ Continuum Subtraction
* Imaging

« Visualization

* Analysis

Reference: Michael Rupen, Chapter 11 Synthesis Imaging Il (ASP Vol. 180)
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Spectral Bandpass:

Spectral frequency response of antenna to a spectrally flat source of unit
amplitude

Perfect Bandpass Bandpassin practice
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Shape due primarily to individual antenna electronics/transmission systems (at VLA
anyway)

Different for each antenna

Varies with time, but much more slowly than atmospheric gain or phase terms

Ninih Synthesis Imaging Summer School, Socorro, June 15-22, 2004
2. Hibbard ‘Spectral Line Il

Bandpass Calibration 4

| o =G,en Vo0 | g
Frequency dependent gain variations are much slower than
variations due pathlength, etc.; bresk g ;; into arapidly varying
frequency-independent part and a frequency dependent part
that variesslowly with time

‘ G ) =Gy(®) By (v, ‘ (12-1)
G ij(t) arecelibrated as in chapter 5. To calibrated B;; (1), observe
abright source that is known to be spectrally flat
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measured independent of v

Examples of bandpass solutions
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Checking the Bandpass Solutions

« Should vary smoothly with frequency

« Apply BP solution to phase calibrator - should also
appear flat

« Look at each antenna BP solution for each scan on
the BP calibrator - should be the same within the
noise
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Strategies for Observing the Bandpass Calibrator

Observe one at least twice during your observation
(doesn’t have to be the same one). More often for
higher spectral dynamic range observations.

Doesn't have to be a point source, but it helps (equal
S/N in BP solution on all baselines)

For each scan, observe BP calibrator long enough so
that uncertainties in BP solution do not significantly
contribute to final image

= 9x (Sl st

S, source
BPcal

At

BPcal
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Flagging Your Data

Errors reported when computing the bandpass

solution reveal a lot about antenna based problems;

use this when flagging continuum data.

« Bandpass should vary smoothly; sharp discontinuities
point to problems.

« Avoid extensive frequency-dependent flagging;

varying UV coverage (resulting in a varying beam &

sidelobes) can create very undesirable artifacts in

spectral line datacubes
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Continuum Subtraction 1

At lower frequencies (X-band and below), the line
emission is often much smaller than the sum of the
continuum emission in the map. Multiplicative errors
(including gain and phase errors) scale with the
strength of the source in the map, so it is desirable to
remove this continuum emission before proceeding
any further.

Can subtract continuum either before or after image
deconvolution. However, deconvolution is a non-
linear process, so if you want to subtract continuum
after deconvolution, you must clean very deeply.
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Continuum Subtraction: basic concept

¢ Use channels with no line emission to model the
continuum & remove it

« lterative process: have to identify channels with line
emission first!

100 my 100 mJy

10 mJy
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Continuum Subtraction: Methods 12

Image Plane (IMLIN): First map, then fit line-free channels in each
pixel of the spectral line datacube with a low-order polynomial and
subtract this

UV Plane: Model UV visibilities and subtract these from the UV
data before mapping

(UVSUB): Clean line-free channels and subtract brightest clean
components from UV datacube

(UVLIN): fit line-free channels of each visibility with a low-order
polynomial and subtract this
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Checking Continuum Subtraction

Velocity {km /<)
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Checking Continuum Subtraction
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Mapping Your Data

« Choice of weighting function trades off sensitivity and
resolution

« We are interested in BOTH resolution (eg, kinematic
studies) and sensitivity (full extent of emission)
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Mapping Considerations:
trade off between resolution and sensitivity
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40" resolution

15" resolution
Q 1 I L O

9" resolution
L O

Smoothed
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Robust=+1
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Robust=-1

Measuring the Integrated Flux

« Interferometers do not measure the visibilities at zero
baseline spacings; therefore they do not measure flux

F(u,v) = f f flay) EFLEEEY) G0 gy

u=0, v= 0, —)

F(0,0) =ff flx,y) dx dy = integrated flux
* Must interpolate zero-spacing flux, using model

based on flux measured on longer baselines (i.e.,
image deconvolution)
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Point Source el

Not a difficult
interpolation
for point sources

But can lead to
large ot
uncertainties
for extended
1 sources

Extended Source |
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Measuring Fluxes

« Deconvolution leads to additional uncertainties,
because Cleaned map is combination of clean model
restored with a Gaussian beam (brightness units of
Jy per clean beam) plus uncleaned residuals
(brightness units of Jy per dirty beam)

¢ Cleaned beam area = Dirty beam area

Strue = Smndek"‘ Sresiduals
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How deeply to Clean
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Figure 12-6. H1in the face-on spiral galaxy NGC 1058: a sampling of channel
maps. The top row shows dirty maps, the bottom row CLEANed images. Note the

large negative bowl in the dirty maps with the most extended emission. Contours are
£2"/%, where o is the rms noise (0.585 mJy/beam) and n = 3,4, .. .

How deeply to clean

* Best strategy is to clean each channel deeply - clean until flux in
clean components levels off.

* Cleanto~10 (afew 1000 clean components)

1o 4000

T

0.01 //',‘

. €48 2 »/“/
0001 g il ./~ s 8 0008 B vl v bt v

100 10 0.1 0.01 1 10 1001000 10¢ 10°
CLN flux limit [mJy/beam] NITER

Sum of CC [Jy]
Sum of ¢C [Jy]

Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004
3. Hibbard ‘Spectral Line Il

Spectral Line
Visualization and
Analysis

Astronomer: Know Thy Data
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Socorro, June 15-22, 2004




Spectral Line Maps are inherently 3-dimensional

Declination
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Examples given using VLA C+D-array observations of NGC 27
4038/9: “The Antennae”

Ninih Synthesis Imaging Summer School, Socorro, June 15-22, 2004
2. Hibbard ‘Spectral Line Il

Greyscale
representation of
a set of channel

maps
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For illustrations, You must choose between many

. . . . 26
2-dimensional projections

1-D Slices along velocity axis = line profiles

2-D Slices along velocity axis = channel maps

Slices along spatial dimension = position velocity profiles
Integration along the velocity axis = moment maps
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“Channel Maps” 28
spatial distribution of line flux at each successive velocity setting
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Emission from
channel maps
contour ed upon
an optical image
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Position-Velocity Profiles

-250 km/s  +250 km/

Slice or Sum the line
emission over one of the 3 i
two spatial dimensions,
and plot against the
remaining spatial
dimension and velocity
Susceptible to projection
effects

o
-

vopeupaq

-250 km/s Velocity
g
2
T

+250 ks

Rotating datacubes gives complete picture of data, noise, and remaining 2
systematic effects

Right Ascension
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« Rotations emphasize
kinematic continuity e
and help separate out
projection effects

« However, not very
intuitive 0.

Ninth Syrthesis Imagin
2. Hibbard

Spectral Line Analysis *

* How you analyze your data depends on what is
there, and what you want to show

¢ ALL analysis has inherent biases
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“Moment” Analysis

« Integrals over velocity

« 0Oth moment = total flux

< 1st moment = intensity weighted (IW) velocity
« 2nd moment = IW velocity dispersion

¢ 3rd moment = skewness or line asymmetry

« 4th moment = curtosis
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Moment Maps
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Second Moment
velocity disperson

L Cuteff Filter Method: i
only use pixels with flux
above some specified level

S, (mJy)

Flux

TR

1400 1600 1800

Velocity (km/s)

Higher order moments can give misleading or
erroneous results

a1

« Low signal-to-noise spectra

« Complex line profiles
— multi-peaked lines
— absorption & emission at the same location
— asymmetric line profiles
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Unwanted emission can seriously bias moment calculations

« Put conditions on line flux before including it in
calculation.

— Cutoff method: only include flux higher than a given
level

— Window method: only include flux over a restricted
velocity range

— Masking method: blank by eye, or by using a smoothed
(lower resolution, higher signal-to-noise) version of the
data
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| Window Filter Method;
only use flux over a
specified veleccity range

s, (mJy)
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channel 21

Multi-peaked line
profiles make higher
order moments
difficult to interpret

moment 0

@S

moment 1
Ninth Syrthesis Imaging Summer SEH00) SOCOTTD, June 10-22,
Spectal Line I
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“Moment” Analysis: general considerations

43

Intensity-weighted Mean (IWM) may not be representative of "

« Use higher cutoff for higher order moments (moment
1, moment 2)

< Investigate features in higher order moments by
directly examining line profiles

¢ Calculating moment 0 with a flux cutoff makes it a
poor measure of integrated flux
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For multi-peaked or asymmetric lines,
fit line profiles

45

Modeling Your Data:

You have 1 more dimension than most people - use it

46

. 0=
40
30" 5
£ .
2 20
¥ oo 0
5000
-15
584950

E NGC 3690

11h28Taet 4t 420 a0° 2800 3000 3200
Right Ascansion Velocity (km/s)

Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004

2. Hibbard ‘Spectral Line Il

VZ = Vsys + Vcir(R) sinicos@+ Vexp (R)sinisin®+V, (R,®)cos i

os

* Rotation Curves
 Disk Structure

» Expanding Shells
* Bipolar Outflows

* N-body Simulations
* etc, etc
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Simple 2-D models:
Expanding Shell

Vo Vexp

Example of Channel Maps
for Expanding Sphere




Simple 2-D model: Rotating disk

Mean Velocity Field

Example of Channel
Maps for Rotating disk
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Matching Data in 3-dimensions:
Rotation Curve Modeling
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Matching Data in 3-dimensions:
N-body simulations
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Conclusions:

Spectral line mapping data is
the coolest stuff | know
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