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Outline

• Aims.
• What is an interferometer?
• Fundamental differences between optical and radio.
• Implementation at optical wavelengths.
• Conclusions.

• A warning:
– When say “optical”, what I mean is 0.4µm - 2.4µm.

– Over this wavelength range there is little change in the 
technology required.
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Aims of this talk

• To present interferometry in a somewhat different light to 
that you have been exposed to.

• To identify the essential differences between radio and 
optical interferometry and clear up some common 
misconceptions.

• To give you a flavor of the implementation of 
interferometry at optical wavelengths.

• Not to teach you optical interferometry!
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Radio vs Optical (i)

VLA - 27 antennae

Bmax ~ 5.2 Mλ at 44 GHz

NPOI - 6 antennae
Bmax ~ 967 Mλ at 667 THz
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Radio vs Optical (ii)

Exactly how do these implementations differ?

Antenna

Front End

IF

Back End

Correlator
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What is an interferometer?

• A device whose output oscillates co-sinusiodally, varying 
with pointing angle like λ/Bproj:
– The properties of these fringes encode the brightness distribution 

of features at this angular scale on the sky.

– This encoding takes place via the fringe contrast (amplitude) and 
offset (phase).

– The actual relationship between the fringe properties and the sky 
brightness distribution is (in most cases) a 2-d Fourier transform.

– Note that in this description the spatial coherence function does 
not appear explicitly.
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What is an interferometer made of?

• Necessary components:
– Antennae: to collect the radiation.
– Waveguides: to transport the radiation to the correlator.
– Delay lines: to compensate for the geometric delay.

– Correlators: to mix the signals together.
– Detectors: to measure the interference signals.

• Optional components:
– Amplifiers: to increase the signal strengths.
– Mixers and local oscillators: to down-convert the signals.
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Principal differences

• Technical issues:
– Optical wavelengths are very much smaller than radio 

wavelengths, typically by a factor between 104 - 107.

• Logistical issues:
– The impact of the atmosphere is far more significant at optical 

wavelengths than in the radio.

• Fundamental issues:
– The properties of the radiation received by a typical optical 

interferometer is very different to that received by its radio 
equivalent. 
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The effect of the atmosphere 

• Can characterize 
the turbulence as a 
thin phase screen 
at altitude, being 
blown past the 
telescope at some 
speed v. 

• Hence, initially 
plane wavefronts
become corrugated 
and lead to poor 
image quality.
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The effect of the atmosphere - spatial fluctuations

• Fried’s parameter, r0:
– The circular aperture size over which the mean2 wavefront error 

is ~1 rad2:
• r0 = [0.432 (2π/λ)2 sec(ξ) 

�
C2

n(h) dh ]-3/5, so r0∝λ6/5.
• Dφ(r) = <|φ(x+r) - φ(x)|2> = 6.88 (r/r0)5/3, i.e. we can characterise the 

wavefront phase fluctuations with a “structure function”.

– Telescopes with diameters < or > than r0 in size give very 
different images:

• D<r0 � diffraction-limited images with FWHM~λ/D.
• D>r0 � specked distorted images with FWHM~λ/r0.

– At good sites, r0 ~ 15cm at 500nm:
• Compare this to the VLA, where r0 ~ 15km at 22GHz.
• The useful aperture diameter for interferometers is ~2r0.
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The effect of the atmosphere - temporal fluctuations

• Coherence time, t0:
– The time over which the mean2 wavefront error changes by ~1 

rad2. Usually this means we can:
• Define a characteristic timescale t0 = 0.314 r0/v, with v the wind 

velocity. So t0∝λ6/5.
• Define a structure function: Dφ(t) = <|φ(t+τ) - φ(τ)|2> = (t/t0)5/3

– At good sites, t0 ~ 10ms at 500nm:
• Can compare this timescale with the characteristic timescale for

phase self-calibration at the VLA, i.e. minutes. 
• But note that the phase fluctuations at the VLA are typically of much 

smaller amplitude.
• The useful coherent integration time for interferometers cannot be 

greater than  ~t0.
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The effect of the atmosphere - angular isoplanicity

• Isoplanatic angle, θ0:
– The angle beyond which the

effects of the atmosphere
become uncorrelated along
different lines of sight.

– Depends on r0 and the 
height of the turbulence:

• θ0 ~ r0/H.
• Hence θ0 ∝ λ6/5.

– At good sites, θ0 ~ 5″ at 500nm:
• Compare with VLA, where this

angle is measured in degrees.
• This limits the sky-coverage for

potential calibrator stars. 
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Fundamental issues

• The occupation number for each mode of the radiation 
field in the optical is << 1:
– This number, <n>, is given by the Planck function:

– Radio: 30GHz (1cm), T=2.7K <n> ~ 1.4
15GHz (2cm), T=5000K <n> ~ 7000

– Optical: 600THz (0.5µm), T=5000K <n> ~ 0.003
150THz (2.0µm), T=1500K <n> ~ 0.008

– Bottom line: 
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Why does this matter?

• Fluctuations in the mode occupation number are 
different:
– These 2 terms are identifiable

as wave and shot noise.

– If n>>1, rms ∝ n, otherwise
rms ∝ sqrt(n).

• Coherent amplification is not helpful:
– Under very general cond-

itions, a phase coherent
amplifier must inject at least
one photon/mode of noise.

– So, amplification is not helpful if n<<1.
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How does this impact implementation?

• It is the combination of these atmospheric & quantum 
limits that makes optical interferometry different:

– Splitting the signal to provide more correlations � S/N penalty.

– Phase unstable conditions always prevail � “self-cal” is 
necessary at all times.

– The instantaneous S/N per integration time is almost always <<1.

– Real-time compensation for the atmospheric fluctuations is 
needed at all times so that ∆OPDatm < λ2/ ∆λ.

16

Ninth Synthesis Imaging Summer School, Socorro, June 15-22, 2004

Some quantitative context

• Consider an observation of a bright quasar:
– mv ~ 12.
– r0 = 10cm, t0 = 5ms.
– Telescope diameter ~ 2.5r0, exposure time 1.5 t0.

– ∆λ/λ ~ 10%, total throughput ~ 10%.
– 4 photons are detected per telescope in our array!

– Basic observables are fringe amplitudes, phases and bispectra
(the product of complex visibilities round a closed loop of 
interferometer baselines).

– These have to be suitably averaged over many integrations.
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Some scribbles on sensitivity (i)

• At optical wavelengths the sensitivity that matters is the 
sensitivity to sense the atmospheric fluctuations and 
correct them in real time (c.f. AO sensitivity).

• This will depend on:
– The type of correlator.

– The type of detectors (CCD, photon counter…).
– The apparent source visibility, i.e. the true source visibility scaled 

down to include de-correlation due to temporal and spatial 
perturbations of the wavefront and instrumental effects.

– The number of photons detected in the relevant “exposure” time.
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Some scribbles on sensitivity (ii)

• At the faintest light levels, the S/N for this type of 
“interferometric wavefront” sensing will be given by:

– Note the relative importance of V, the apparent source visibility, 
as compared to N, the number of detected photons.

– Note also that this sensitivity limit must be comparable to that for 
conventional AO, as both aim to do the same thing, i.e. sense the 
atmosphere. 
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Some scribbles on sensitivity (iii)

• What happens if the target is resolved (V<<1)?
– Tracking fails - you cant even attempt to measure anything!
– The only ways to track the atmospheric fluctuations on a long 

baseline (V<<1) are to:
• Decompose the baseline into lots of shorter ones and track on each 

simultaneously. This is called “baseline bootstrapping”.
• Monitor the atmosphere at a wavelength at which the source isn’t so 

resolved. This is called “wavelength bootstrapping”.
• Monitor the atmosphere in real time using an off-axis reference 

source that is both brighter and more compact than the science 
target. Finding such references is difficult.
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Some scribbles on sensitivity (iv)

• So, well designed optical interferometers allow for:
– Maintaining enough V2N to stabilize the array.

• Photon limited detectors.
• High throughput and low instrumental decorrelation.
• Redundant array layout with each long baseline being made up of 

many short legs.
• Use of off-axis reference stars - so-called “dual-feed”: 

– Needs parallel transport and correlator.
– Limited by isoplanatic angle.

– Subsequently, collecting enough data to build up a good enough 
S/N on the complex visibilities.
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Some nonsense you should forget

• The fact that you can’t measure the amplitude and phase 
of the electric field at optical wavelengths is an important
difference.

• Optical interferometers can’t measure the amplitude and 
phase of the coherence function directly.

• Adaptive optics can significantly increase the limiting 
magnitude of optical interferometry.

• It is necessarily scientifically valuable to build an optical 
interferometer with kilometric baselines.
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Now for the practice!

The VLTI in Chile, showing the 
four 8m unit telescopes and 
the first 1.8m outrigger. Note 

also the rail system and 
foundation pads for the ATs.
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A typical optical interferometer - the MROI
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Telescopes

• 1.8m Keck outrigger. The output 
follows a coude path and travels 
off M7 to the beam combining lab. 
The collimated output beam is 
100mm in diameter.

• 1.4m alt-alt design for the 
MROI. The 100mm collimated 
beam is directed out off only 3 
mirrors. This mount design was 
used for the ESO CAT.
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Transport

• Beam relay pipes at NPOI and COAST. Usually these are evacuated to < 
1/50th atmosphere to limit longitudinal  dispersion and turbulence.

• Generally a beam diameter D > (λz)1/2 is used, where z is the pipe length, to 
minimize diffraction losses.
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Delay lines

• Schematic cartoon of the VTI 
delay line carriages which act as 
an optical trombone, i.e. we have 
physical switching-in of delay. 
Note the precision rails, and the 
use of an in-place laser beam for 
metrology.

• The CHARA JPL-designed 
delay lines. Like the VLTI 
design, these run on precision 
rails in air. Additional stages of 
motion are provided by a voice-
coil and a piezo-actuated stage.
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Correlators

• Cartoon and photo of a typical 
pupil-plane correlator where 
collimated light beams are 
combined. The fringes are 
visualised by modulating the OPD 
between the beams. 

• Cartoon and photo of a 3-beam 
image plane correlator at the 
VLTI. The complexity of the 
system results from its multi-
wavelength spectroscopic 
capability.
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Results

Monnier et al, ApJ, 
567, L137, 2002

Rodriguez et al, ApJ, 
574, 2002

Which is the radio interferometric map?
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Summary

• An optical interferometer works the same as a phase-
unstable radio interferometer at ~300 THz.

• The key differences are to do with the lack of signal 
amplification and the impact of the atmosphere:
– Other differences are not that important.

• One can expect useful scientific advances in the next few 
years from the VLTI, Keck and CHARA arrays.


