Radio Science & Future Interferometers

T. Beasley CARMA/Caltech Owens Valley Radio Observatory

Astronomy

- Gather information about universe from
 - Electromagnetic radiation
 - Particles
 - Gravitational radiation...?
- 2-3D imaging sensitivity, resolution, fidelity
- More Resolution → Interferometry

Electromagnetic spectrum

physical properties – temperature, pressure, structure, magnetic fields + physical process→ different emissions

atoms & molecules → unique radio frequencies

Main Processes - Radio Emission

- Synchrotron radiation continuum
 - Energetic charged particles accelerating along magnetic field lines
- Thermal emission continuum
 - Hot \rightarrow Cool bodies
 - · Charged particles interacting in a plasma at T
- Spectral Line emission spectral line
 - Discrete transitions in atoms and molecules

Synchrotron Radiation

Polarization properties of radiation provides information on magnetic field geometry

Thermal Emission

- Emission from warm bodies
 - "Blackbody" radiation
 - \bullet Bodies with temperatures of \sim 3-30 K emit in the mm & submm bands
- Emission from accelerating charged particles
 - "Bremsstrahlung" or free-free emission from ionized plasmas

Astronomy

- Information via
 - Electromagnetic radiation
 - Particles
- Approach: 2D imaging. Parameters of interest → sensitivity, resolution, fidelity, spectroscopy
- $\blacksquare \mbox{ More Angular Resolution} \to \mbox{Interferometry}$

Future Radio Interferometers

Underway/funded

EVLA (cm/mm)
 ATA (cm)
 SZA (cm/mm)
 CARMA/SZA (mm)
 ALMA (mm/submm)

Proposed

LWA/LOFAR (m)FASR (m/cm)SKA (m/cm)

Expanded VLA - EVLA

- VLA 27 x 25m reflectors, Y array arms up to 22 km long
- Built in 1970s, dedicated 1980
- · Limited upgrading since original construction

EVLA Goals

- Use modern technology to obtain an order of magnitude improvement in most VLA observational capabilities
 - Continuous frequency coverage 1-50 GHz
 - o 8 receiver bands, new LO system
 - o Up to 16 GHz bandwidth per antenna
 - New IF system (8 x 2GHz), fiber optic digital transmission
 - $_{\rm o}$ $\,$ New wideband, high spectral resolution correlator
 - New monitor/control and data processing systems
- Maintain VLA science during the decade-long upgrade

EVLA Performance

	VLA	Phase 1	Phase 2
Point source sensitivity	10 μJy	0.8 μJγ	0.6 µЈу
No. baseband pairs	2	4	4
Maximum bandwidth in each pol'n	0.1 GHz	8 GHz	8 GHz
No. frequency channels, full BW	16	16384	16384
Max. frequency channels	512	16384 [262144]	16384 [262144]
Max frequency resolution	381 Hz	~1 Hz	~1 Hz
(Log) Frequency coverage 0.3-50 GHz	25%	75%	100%
No. baselines	351	351	666
Spatial resolution @ 5 GHz	0.4"	0.4"	0.04"

Phase II - New Mexico Array

The Allen Telescope Array

- First telescope designed specifically for the Search for Extra-Terrestrial Intelligence (SETI)
 Array of 350 commercial satellite dishes, 6m in diameter.
- Will speed SETI targeted searching by 100x

 Will target from 100,000 to million nearby stars

 - Will scan 100 million radio
- Start-up scheduled for 2005 Funded by Paul Allen (Microsoft)

Offset Gregorian Antenna 6.1 m x 7.0 m Primary Az-El Drive Log-periodic Feed Shroud 2.4 m Secondary (feed can't see ground or array)

ATA Science

- SETI
 - 100,000 FGK stars
 - Galactic plane survey (2nd generation DSP)
- - All sky HI, z < 0.03, Milky Way at 100 s
 - Large area to z ~ 0.1 or more
 - Zeeman measurements magnetic field
- Temporal Variables
 - Pulsar Timing Array
 - Pulsar survey follow-ups
 - Extreme Scattering Events
 - Transients (e.g. gamma ray bursts)

key features

- Heterogeneous array (850 m²) at new 2200m site
 six 10.4m antennas OVRO

 - · nine 6.1m antennas BIMA
 - eight 3.5m antennas SZA
- Frequency: 22-30GHz, 70-118 GHz, 220-270 GHz
- Arrays: four configs: 100m 2000m + SZA
- Imaging over wide range of angular scales: CARMA: 0.15-30", SZA: 30-180"
- More antennas \Rightarrow High-fidelity imaging + snapshot
- Mosaicing (point-click + OTF)

Millimeter science

- Studies of circumstellar/protoplanetary disks, stellar outflows, stellar winds from evolved stars
- Examine SF environments of nearby & distant galaxies
- Explore Solar System: Sun, planets, comets, KBOs
- Probe astrochemistry of ISM, IPM
- Image distant universe: CO/SF in high-redshift
- Cosmology experiments SZ, CMB polarization

Atacama Large Millimeter Array

ALMA

Antennas	64 x 12 m	
Collecting area	>7000 m ²	
Resolution	0″.02 λ _{mm}	
Receivers	10 bands: 0.3 – 7 mm (36 - 850 GHz)	
Correlator	2016 baselines	
Bandwidth	16 GHz/baseline	
Spectral channels	4096 per IF (8 x 2 GHz)	

ALMA Science

- Formation of galaxies and clusters
- Formation of stars
- Formation of planets
- Creation of the elements
 - Old stellar atmospheres
 - Supernova ejecta
- Low temperature thermal science
 - Planetary composition and weather
 - Structure of Interstellar gas and dust
 - Astrochemistry and the origins of life

Low Frequency Science Targets

- Redshifted HI from the Epoch of Reionization
- High-z starbursts
- Galaxy clusters and the
- Cosmic ray distribution, and airshower radio bursts
- Steep spectrum and fossil radio galaxies
- Supernova remnants and ISM energy budget
- Interstellar recombination
- Nearby pulsars, ghost

- Extrasolar gas giant planetary radio emission
- Stellar flares
- Interstellar medium propagation effects
- Transients, GRB and LIGO event counterparts, buffering
- · Solar radio studies
- CME detection, mapping by IPS, scattering
- Extremely high resolution ionospheric tomography
- Passive Ionospheric Radar

- Frequency Agile Solar Radiotelescope (FASR)
- Of order 100 antennas (5000 baselines)
- Better than 1" imaging at 1s time resolution
- Full frequency coverage 0.1-30 GHz
- Designed Specifically for Solar Imaging
 - Full Sun (to at least 12 GHz)
 - Designed for solar spatial scales
 - Designed for solar brightness variability

Square Kilometer Array - SKA

Next generation "discovery" telescope in the meter to centimeter wavelength region with

- 100 x sensitivity of EVLA
- large instantaneous field of view
- new modes of operation (multiple simultaneous users - multibeaming)
- \rightarrow extremely powerful survey telescope with the capability to follow up individual objects with high angular and time resolution

SKA scientific drivers

SKA Design Goals

Sensitivity A_{eff}/T_{sys} = 2 x 10⁴ m²/K Surface brightness sensitivity 1K at 0.1 arcsec (continuum) Frequency range 0.15 - 22 GHz

Redshift coverage Imaging field of view

1 deg² at 1.4 GHz Multi-beam capability $N_{\text{heams}} > 100$

< 0.015 arcsec at 1.4 GHz Angular resolution Number of spatial pixels > 108

Instantaneous bandwidth 0.5 + frequency/5 GHz Number of spectral channels > 104 106 Image dynamic range Polarisation purity 40 dB

z<8.5 (HI); z>4.2 (CO $(1\rightarrow 0)$)

 dark energy as function of redshift Evolution of galaxies

Dark Ages and Epoch of Re-ionization

Large Scale Structure in the Universe

Transient universe

genesis of black holes star formation rate

· Protoplanetary disks

• Probing Gravity through pulsars

black hole binary as probe of strong gravity
 low-frequency gravity wave background

ionization of neutral IGM
 properties of first luminous objects

• Origin and evolution of Cosmic Magnetic Fields large scales, primordial fields

- small scales, turbulence & dynamos

Dark energy

- Alters distance measures in cosmology incl. evolution of Hubble parameter with time and growth of structure
- Power spectrum of the clustering of galaxies (angular/redshift) likely to contain a signature of acoustic oscillations at time of recombination
- Use scale of acoustic oscillations as a cosmological standard ruler to measure equation of state of dark energy at intermediate redshift and possibly its evolution. 1<z<2 optimal.
- SKA: In 360 hours and a 4 deg² FOV (@1.4) SKA will detect ~2x106 HI galaxies. It can then cover 'whole' sky in ~5 years with 8 simultaneous FOVs.

Achieving the SKA

•Reduce overall cost per m² of collecting area by a factor ~10 cf. current arrays

while...

•Maximising flexibility of design

And..

- •Minimising maintenance/running costs
- →Take advantage of massive industrial R&D in fibre optics and electronics industries ("Moore's Law" to ~2015) for transport and handling of data
- $\ensuremath{\Rightarrow}$ Develop innovative, cost effective, new concepts for collectors

SKA

- Initial site analyses submitted by Australia, China, South Africa, and USA in May 2003
- Initial site analysis by Brazil in preparation
- RFI and tropospheric stability testing at candidate sites in 2004-5
- Technology decision 2007/2008
- Construction 2012+

Summary

- Future: Radio astronomy \leftrightarrow Interferometry
- Current arrays going strong, new arrays under development (mm)
- Importance of any field can grow rapidly, multiple routes to knowledge valuable...
- Challenges cheap collecting area, data transport & processing, public outreach, international collaboration (imho)
- Understanding of techniques, limitations, possibilities important – summer school

Thanks to

John Hibbard

Richard Schilizzi

Stuart Vogel

Al Wooten

Douglas Bock

Peter Napier

+ countless others for info, overheads...