

Resolution = Observing wavelength / Telescope diameter								
Resolution	Diamotor	al (5000A)	Radio (4cm)					
'	2mm	Eve	140m	GBT+				
"	10cm	Amateur Telescope	8km	VLA-B				
).″05	2m	HST	160km	MERLIN				
0.″001	100m	Interferometer	8200km	VLBI				
Atmosphere gives 17 limit without corrections which are easiest in radio Jupiter and Io as seen from Earth								
1 arcmin	1 arc	sec 0.05 arcs	ec 0.00	01 arcsec				
			3					

VLBI SCIENCE SAMPLES

CAPABILITY

EXAMPLE SCIENCE

High resolution continuum	Jet formation		
Movies and polarization	Jet dynamics and magnetic fields		
Phase referencing to detect weak sources	Detect survey sources, distinguish starbursts from AGN		
Phase referencing for positions	Accurate proper motions		
High resolution spectral line	Accretion disks and extra galactic distances		
Spectral line movies	Stellar environments		
Geodesy and astrometry	Plate motions, EOP, reference frames		
VLBI Synthesis Imag	Craig Walker		

3C120 43 GHz VLBA Movie Gómez et al. Science 289, 2317 Bottom:

Contours of intensity Color shows polarized flux

Top: Color shows intensity Lines show B vectors Resolution ~0."0005 One image / Month

Intensity and polarization

variations suggest jet-cloud interaction Between 2 and 4 mas from core (~8 pc) Cloud would be

intermediate in mass between broad and narrow line clouds.

Second Strand ASTROMETRY International Celestial Reference Frame (ICRF) International Terrestrial Reference Frame (ITRF) Earth rotation and orientation relative to inertial reference frame of distant quasars Tectonic plate motions measured directly Earth orientation data used in studies of Earth's core and Earth/atmosphere interaction General relativity tests Solar bending significant over whole sky

er School 2002

0

DATA REDUCTION VLBI vs LINKED INTERFEROMETRY

- VLBI is not fundamentally different from linked interferometry
- Differences are a matter of degree
- Separate clocks allow rapid changes in instrumental phase
 Independent atmospheres give rapid phase variations and large gradients
 Different source elevations exacerbate the effect

sis Imaging St

- Sources bright enough to be both easily detectable and compact to VLBI are small, highly energetic, and variable
 - · There are no flux calibrators
 - There are no polarization position angle calibrators
 There are no good point source amplitude calibrators
- -Model uncertainties are can be large
- Source positions, station locations, and the Earth orientation are difficult to determine to a small fraction of a wavelength
- Often use antennas not designed for interferometry. Not very phase stable

VLBI Data Reduction Unique Aspects

- Schedule fringe finder observations (Helps correlator operations)
- Correct instrumental phases with pulse calibration tones
- Correct high delay and phase rate offsets with fringe fit
- Phase referencing requires short throws and fast cycles
- Calibrate flux density using telescope a priori gains
- Calibrate polarization PA using near concurrent observations
 on a short baseline instrument
- Image calibrators
- Strong source imaging usually based on self calibration with very poor starting model

	Hem	Approx Max.	Time scale
THE	Zero order geometry.	6000 km	1 day
DELAY MODEL	Nutation	~ 20"	< 18.6 yr
	Precession	~ 0.5 arcmin/yr	jwats.
	Annual aberration.	29*	1 year
	Retarded baseline.	20 m	1 day
	Gravitational delay.	4 mas @ 90° from sun	1 year
For 8000 km baseline	Tectonic motion.	10 cm/yt	31015
1 mas = 3.9 cm = 130 ps	Solid Earth Tide	50 cm	12 hr
	Pole Tide	2 cm	~1 37
	Ocean Loading	2 cm	12 hr
Adapted from Sovers, Fanselow, and Jacobs Reviews of Modern Physics, Oct 1998	Atmospheric Loading	2 cm	weeks
	Post-glacial Rebound	several mm/yr	years
	Polar motion	0.5 arcsec	~ 1.2 years
	UT1 (Earth rotation)	Several mas	Various
	Ionosphere	~ 2 m at 2 GHz	All
	Dry Troposphere	2.3 m at zenith	hours to days
	Wet Troposphere	0-30 cm at zenith	All
-	Antenna structure	<10 m. 1cm thermal	· · · · · ·
	Parallactic angle	0.5 turn	hours
	Station clocks	few microsec	hours
	Source structure	5 cm	years

FRINGE FITTING: WHAT and WHY Raw correlator output has phase slopes in time and frequency Slope in time is "fringe rate" · Fluctuations worse at high frequency because of water vapor Slope in frequency is "delay" (from φ=υτ) · Fluctuations worse at low frequency because of ionosphere

- Fringe fit is self calibration with first derivatives in time and frequency
- For Astronomy:
- Fit one or a few scans to "set clocks" and align channels ("manual pcal")
- Fit calibrator to track most variations (optional)
- Fit target source if strong (optional)
- Used to allow averaging in frequency and time
- Used to allow higher SNR self calibration (longer solution)
- Allows corrections for smearing from previous averaging

For geodesy

- Fitted delays are the primary "observable"
- Slopes fitted over wide frequency range ("Bandwidth Synthesis")

45

1

FUTURE DEVELOPMENT

- · Use GPS tropospheric delays for calibration
- Use water vapor radiometers for calibration
- Use improved ionosphere models when available (especially 3D)
- Regular use of multi-frequency synthesis (MFS)
- Use pulse cal for Tsys measurement; for polarization PA calibration
- Push to higher frequencies
- More use of large antennas (GBT, EB, Arecibo, Y27)
- Develop robust automated imaging procedures
- · Technical push to wider bandwidths and real time
- Fill in shorter baselines
- MERLIN/VLBI integration in Europe; EVLA/VLBA integration in US Future space projects
- Big sensitivity increase with long baselines of SKA

- Get good paralactic angle coverage on one to get instrumental terms

44