

At a given frequency, all we can know about the signal is contained in two numbers: the real and the imaginary part, or the amplitude and the phase.

Spectral Line Correlators (cont'd) Clever approach #1: the FX correlator F: replace the filterbank with a Fourier transform X: use the simple (complex) correlator above to measure the cross-correlation at each frequency average over time, & record the results Clever approach #2: the XF correlator X: measure the correlation function at a bunch of different lags (delays) average over time F: Fourier transform the resulting time (lag) series to obtain spectra record the results

			VL	A C	orrelat	or:				
	P.	andwi	dthe at	nd N	umber	e of	Chann	ale		
	D	anuwi	unis ai	IU IN	unioci	5 01	Chann			
(B). 3.3	TA 8.									
.1908	102.303	CHILDING DOM			me on situer	rusii. Lussin (26.0000	
			Single II: N	Roste(1)	Test IF M	and th	Dec IF R	edid ³¹	1	
	85V	Barcheithe	No.	Este.	Bit.	Eise.	36.	Eres,		
	Cede	MRa	Generals	Seven.	GLEMOS ²⁴	Sep. 82.	Casando ¹⁴	Seyor: 180s		
	a	39	100	3128	8	6250	4	12800	1	
	1	28	32	78L28	16	1362.5		3425		
	2	12.5	66	190,303	22	200.020	18	7/8L28		
	8	8,29	120	15 297	100	36.658	- 100 - 100	1992,818		
	18	L9825	812	3,052	295	6.155	128	12,207		
	政	0.76225	812	1.528	250	3,932	126	N.1346		
	8	0.1853425	208	6.763	129	1.528	66	3,652		
	8	6.1353625	812	0.987	298	8.783	125	1.826	1	
Netwo										
(I) Se	sorting 14	ade: 1A, 1B, 1	1C, 1B.							
(2) KBS (3) KBS	er dag M	Adv. 248, 23 adv. 2 72 73	C. 2816, 2803, 3 F. P. Istornalble	ter con the	anters fran a	ne were er i	Form 1976 For source	a 1000 au 9	er adatality	
deficance	translation of	anima of some	tor of control.	Has chose	out and change	N OFFICIAL	w. The solution	man signi se	and the second	
menter	. 10 615 Mar	sisis& and R	Breasthely.							
(8) Th	व्हा स्टल क्रि	na manpaca ng	-period. Line ch	rauntes bra	eliaceel. Mr. Knee 3	ersis brocci	sear year and	CAL IN ADD	strad. Lines	
to 2 set	an be sele	and using the	data selection :	and support.	altable valetsie f	THE REAL PROPERTY.	and Hitserry	CORE CALLER AND	te opie	
_	-							00a	the second second	

VLBI

- difficult to send the data to a central location in real time
- long baselines, unsynchronized clocks ⇒ relative phases and delays are poorly known
- So, record the data and correlate later
- Advantages of 2-level recording

• number of multiplies: FX wins as $\{N_{ant}, N_{chan}\}$

- number of logic gates: XF multiplies are much easier than FX; which wins, depends on current technology
- shuffling the data about: "copper" favors XF over FX for big correlators
- bright ideas help: hybrid correlators, nifty correlator chips, etc.

New Mexico Correlators										
	VLA	EVLA (WIDAR)	VLBA							
Architecture	XF	filter-XF	FX							
Quantization	3-level	16/256-level	2- or 4-level							
Nant	27	40	20							
Max. ∆v	0.2 GHz	16 GHz	0.256 GHz							
N _{chan}	1-512	16,384-262,144	256-2048							
Min. ðv	381 Hz	0.12 Hz	61.0 Hz							
dt _{min}	1.7 s	0.01 s	0.13 s							
Power req't.	50 kW	135 kW	10-15 kW							
Data rate	3.3 x 103 vis/sec	2.6 x 107 vis/sec	3.3 x 106 vis/sec							
A0										

Current VLA EVLA/WIDAR													
Starfe Pol. Fand. Two Pol.Fand. Four Pol.Fand.				1	Single Po	d. Prod.	Two Pol.Prod.		Four Pol.Prod.				
Englanden	_Bo.	Ere.	No.	Kers.	- Brs	Econ.	Bandwidth	No.	Freq.	No.	Freq.	No.	Freq.
Alle	connells	Street.	e,termentile.	Solater.	Citraneolis	priner.	All All A	Cashnels	Separ.	Cristinels	Separ.	u.nanneis	Separ.
		tabe	for her	Life	becker	Actific:	8100	14 994	E Hz	per pol	k Hz	per pol	8.ffz 2000
100	10	6230		12100	2	100000	8192	10,354	200	8,192	1000	4,050	2000
20	19	261228	10	5235	4	ALC: NO. OF	4000	211,769	200	10,102	273, 115	4,020	1000
29	80	30L28	109	100050	÷	34258	1014	02,100	154245	29,709	23.45	10,102	200
6.95	196	200404	62	107 689	100	100.070	512	131.072	1,005	65,536	7.813	10,004	15.625
10.00	100	100002	726	100.000	44	30, 1090	154	1002 1.84	0.077	121 (179	1 652	45.530	2000
1 1000	200	TATE:	400	6.092	795	19-967	126	262 144	0.495	131.072	0.977	65,536	1.953
0.78025	579	1.5785	205	3052	795	6.162	64	262 144	0.244	131.072	0.488	65 536	0.977
D.TEMET	579	0.555	706	0.005	125	1.50%	32	262,144	0.122	131.072	0.244	65.536	0.488
				1. Contractor			16	262,144	0.061	131.072	0.122	65,536	0.244
						8	262,144	0.031	131,072	0.061	65.536	0.122	
							4	262,144	0.015	131,072	0.031	65,536	0.051
							2	262,144	0.008	131,072	0.015	65,536	0.031
							1 1	252,144	3.8 Hz	131,072	7.6 Hz	65,536	0.015
							0.5	262,144	1.9 Hz	131,072	-3.8 Hz	65,536	7.6 Hz
							0.25	262,144	0.95 Hz	131,072	1.9 Hz	65,536	3.8 Hz
							0.125	262,144	0.48 Hz	131,072	0.95 Hz	65,536	1.9 Hz
							0.0625	262,144	0.24 Hz	131,072	0.48 Hz	65,536	0.95 Hz
							0.03125	262,144	0.12 Hz	131,072	0.24 Hz	65,536	0.48 Hz
M.P. Rupen, Synthesis Imaging Summer 241										41			