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What is a Correlator?

+ In an optical telescope...
— a lens or a mirror collects the light & brings it to a focus

— a spectrograph separates the different frequencies
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¢ In an interferometer, the correlator performs both
these tasks, by correlating the signals from each
telescope (antenna) pair:
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The basic observables are the complex visibilities:
amplitude & phase
as functions of
baseline, time, and frequency.

The correlator takes in the signals from the individual
telescopes, and writes out these visibilities.

Correlator Basics

The cross-correlation of two real signalsw;(¢) and v;(t)
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A simple (real) correlator.
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Broad-band Continuum Correlators
1. The simple approach:

« use a filterbank to split the signal up into quasi-
monochromatic signals ¥

* hook each of these up to a different complex correlator, with

the appropriate (different) delay: A7 = 1/ (4w}
« add up all the outputs

2. The clever approach:

instead of sticking in a delay, put in a filter that shifts the phase
for all frequencies by 102
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Correlation of a Single Frequency

For a monochromatic signal:

vi(t) = sin2mgt
v;(t) = sin (2wt +¢)
and the correlation function is

zi(7) =

(sin2mupt) sin (2w (t + 7) + @)}
xR eos 2wy (T — Tg) + 2ysin 2wy (T — 79)
So we need only measure i;; = xg + iy, with

e rp = ;Igj(?’u)

® ;= xij(1 + A7), with Ar =1/ () (Ag = 90°).
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At a given frequency, all we can know about the signal is

contained in two numbers: the real and the imaginary
part, or the amplitude and the phase.

V,(t)e jl'i: 3 sy
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A complex correlator.
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Spectral Line Correlators

1. The simple approach:
« use a filterbank to split the signal up into quasi-
monochromatic signals ¥
« hook each of these up to a different complex correlator, with
the appropriate (different) delay: Ar. = 1/ (4wy)
« record all the outputs: R; 7 (U._ t)
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Fourier Transforms: a motivational exercise
The frequency spectrum is the Fourier transform of the

cross-correlation (lag) function.

* Short lags (small delays) <= high frequencies
* Long lags (large delays) <= low frequencies

..s0 measuring a range of lags corresponds to
measuring a range of frequencies!
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Spectral Line Correlators (cont’d)

2.Clever approach #1: the FX correlator
« F: replace the filterbank with a Fourier transform
* X: use the simple (complex) correlator above to measure the
cross-correlation at each frequency
« average over time, & record the results

3. Clever approach #2: the XF correlator
+ X: measure the correlation function at a bunch of different lags
(delays)
* average over time
* F: Fourier transform the resulting time (lag) series to obtain
spectra
« record the results
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FX vs. XF

F

n S,(v)
b

Fourier transform

multiply multiply

Fourier transform
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Fig. 4-6: FX correlator baseline processing.

Fig. 4-1: Lag (XF) correlator baseline processing.

b M.P. Rupen, Synthesis Imaging Summer Q ¢ 23
e Modor Tegh | Weveebtiie School, 18 June 2002 | sw-anaor @'

Details, Details

Why digital?
* precise & repeatable
* lots of duplication
* accurate & stable delay lines
..but there are some complications as well...
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Digitization

1. Sampling: v(f) = v(t,), with £,=(0,1,2,...)®¢
— For signal v(¢) limited to 05V 3+ Qv, this is
lossless if done at the Nyquist rate:
Dt3-1/2V)
— n.b. wider bandwidth = finer time samples!
— limits accuracy of delays/lags
2. Quantization: v(f) = v(¢) + ot
— quantization noise

— quantized signal is not band-limited =
oversampling helps
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Quantization & Quantization Losses

LARRY B IFADEARKS
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Michael’s Miniature Correlator

Vl
VZ

! integrated &
Signals come in...  sampled... ' quantized.:.delayed... multiplied...  pormalized
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Cross-Correlating a Digital Signal

We measure the cross-correlation of the digitized

(rather than the original) signals.
« digitized CC is monotonic function of original CC
* 1-bit (2-level) quantization: ‘

. (T
24(T) = 30 8in %ﬁ)

— a; is average signal power level — NOT kept for 2-level

quantization!

—roughly linear for correlation coefficient Zi(7) < 1
« For high correlation coefficients, requires non-linear

correction: the Van Vleck correction
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Van Vleck Correction

LARRY R D'ADDARIO
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Spectral Response; Gibbs Ringing

* XF correlator: limited number of lags N

= ‘uniform’ coverage to max. lag NA¢
= Fourier transform gives spectral response

- 22% sidelobes!
- Hanning smoothing

FX correlator: as XF, but Fourier transform before
multiplication = spectral response is

r z
sin (NAT) v
(NAT) v
- 5% sidelobes
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Spectral Response: XF Correlator
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sinc( ) vs. sinc?( )

Figure 4-8. The sinc*(.)

* n.b. radio frequency interference is spread across frequency
by the spectral response
* Gibbs phenomenon: ‘ringing’ off the band edges
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-- recirculation:

« chips are generally running flat-out for max. Av (e.g.
EVLA/WIDAR uses a 256 MHz clock with Av = 128 MHz/sub-
band)

« For smaller Av, chips are sitting idle most of the time: e.g., pass
32 MHz to a chip capable of doing 128 M multiplies per second

= add some memory, and send two copies of the data with
different delays

N 00 1AV
= Bv Av) 2
..limited by memory & data output rates
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How to Obtain Finer Frequency Resolution
The size of a correlator (number of chips, speed, etc.) is
generally set by the number of baselines (o< NZ,} and
the maximum total bandwidth. [note also copper/connectivity costs...]
* Subarrays
. trade antennas for channels
* Bandwidth
--cut Av:
= same number of lags/spectral points across a
smaller Av: N, = constant
= narrower channels: V[Av
.limited by filters
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VLA Correlator:
Bandwidths and Numbers of Channels
‘Table 14: Avaiftable bandwidths and mumher of spectral e chammels in mormal mode
Simgle IF Mode(!) Two IF Mogel D Bour IF Mode (%)
HW | Bandwidth No. Firexy. No. Freq, No. Ereq.
Cade MEx Channels’™ | Separ. | Chanmels'D | Scpar. | Chamnels(™) | Separ.
W | o | v | g | v
R ® - MRS
Vo= % | e | w || s | s
3| o o | % |weaw| ae | o
s e | oo [ Ees | & e | w n
Hl P BB o IR ol A
s Moo | S | oam | | o | mew
ol e | | | m [ | e | e
| i | e | am | me | tew | e | s
o | Giowmos | s | omm | o | o | e | vew
Nokers:
(13 i des 14, 18, 1€, 10,
(2) Cibwerving ‘Jm‘lm)AE 24€, 24T, 267, 2BD, 20D,
(3) Gibwervimg Modes £, PA, PH. Tt is pomible ta wse the output front oms, m.mrﬁmmmmk“q @ ta obaiz
differemt mhmqnmnfmrmhanfmundlwnhzmdi chanmel separation. The minimmum aed oasiomo
mmmber of channels is 4 and 512 respectively
(4 nxxmk.hemrmbmnf&mlehner_hanmpnﬂﬁ-nlmdzm prosesor, Ary mumber of spectral Line
i S .t ot s o s o i b e i s
ey b b e o S o S R e RSV 2 TEopee e
ﬂ e.“ ‘fmj . M.P. Rup;:,hizzl?zs}i'];n;gior;g Summer ..','E @ 36




VLBI
« difficult to send the data to a central location in
real time

* long baselines, unsynchronized clocks =
relative phases and delays are poorly known

* So, record the data and correlate later
* Advantages of 2-level recording
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Correlator Efficiency n,

* quantization noise
* overhead
— don’t correlate all possible lags
— blanking
* eITors
— incorrect quantization levels
— incorrect delays

Choice of Architecture

« number of multiplies: FX wins as {N,,, N} T
multiplies per second ~N,, AV N . N,

ant prod N chan

» number of logic gates: XF multiplies are much
easier than FX; which wins, depends on current
technology

» shuffling the data about: “copper” favors XF
over FX for big correlators

* bright ideas help: hybrid correlators, nifty
correlator chips, etc.
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New Mexico Correlators
EVLA
VLA (WIDAR) VLBA
Architecture XF filter-XF FX
Quantization 3-level 16/256-level 2-or 4-level
Ny 27 40 20
Max. Av 0.2 GHz 16 GHz 0.256 GHz
N 1-512 16,384-262,144 256-2048
Min. v 381 Hz 0.12 Hz 61.0 Hz
dt,,; 175 0.01s 0.13s
Power req’t. 50 kW 135 kW 10-15 kW
Data rate 3.3 x 10 vis/sec 2.6 x 107 vis/sec 3.3 x 10° vis/sec
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