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Fundamentals of Radio  
Interferometry

• Fundamentals of  Coherence Theory
• Geometries of Interferometer Arrays
• Real Interferometers
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A long time ago, in a galaxy far, far away …

An electron was moved.  This action caused an electromagnetic 
wave to be launched, which then propagated away, obeying the 
well-known Maxwell’s equations.  

At a later time, at another locale, this EM wave, and many others 
from all the other electrons in the universe, arrived at a sensing 
device (a.k.a. ‘antenna’).  The superposition of all these fields 
creates an electric current in the antenna, which (thanks to very 
clever engineers) we can measure, and which gives us information
about the electric field.  

What can we learn about the radiating source from such 
measures? 
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Let us denote the coordinates of our electron by:  (R, t), and the 
vector electric field by:  E(R,t).   The location of the ‘antenna’ is 
denoted by r. 

It is useful to think of these fields in terms of their spectral content.  
Imagine the voltage waveform going into a large filter bank, which 
decomposes the time-ordered field into its mono-chromatic 
components of the electric field, Eν(R). 

Because the mono-chromatic components of the field from the far-
reaches of the universe add linearly, we can express the electric 
field at location r by: 

Where Pν(R,r) is the propagator, and describes how the fields at R
influence those at r. 
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An emitting electron
(one of many)

R

r

An observer

The ‘celestial sphere’

R0
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At this point we introduce simplifying assumptions:

1. Scalar fields:  We consider a single scalar component of the 
vector field.    The vector field E becomes a scalar component E, 
and the propagator Pν(R,r) reduces from a tensor to a scalar. 

2. The origin of the emission is at a great distance, and there is no 
hope of ‘resolving’ the depth.  We can then consider the 
emission to originate from a common distance, |R0| -- and with 
an equivalent electric field Eν(R0)

3. Space within this celestial sphere is empty.  In this case, the 
propagator is particularly simple:

which simply says that the phase is retarded by 2πν|R-r|/c 
radians, and the amplitude diminished by a factor 1/|R-r|.
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We then have, for the monochromatic field component at our 
sampling point:

Note that the integration over volume has been replaced with one of 
the equivalent field over the celestial surface. 

So – what can we do with this?  By itself, it is not particular 
useful – an amplitude and phase at a point in time.   But a 
‘comparison’ of these fields at two different locations might provide 
useful information. 

This comparison can be quantified by forming the complex 
product of these fields when measured at two places, and averaging.  
Define the spatial coherence function as: 
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We can now insert our expression for the summed monochromatic 
field at locations r1 and r2, to obtain a general expression for the 
quantity Vν,.  The resulting expression is very long -- see Equation 3-
1 in the book.  

We then introduce our fourth – and very important – assumption:  

4.   The fields are spatially incoherent.  That is, 

when

This means there is no long-term phase relationship between 
emission from different points on the celestial sphere.  This condition 
can be violated in some cases (scattering, illumination of a screen 
from a common source), so be careful! 
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Now we introduce two important quantities:

•The unit direction vector, s:

•The specific intensity, Iν:

And replace the surface element dS with the elemental solid 
angle:

Remembering that |R0| >> |r|, we find:
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Using this condition, we find (see Chap. 1 of the book):
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This beautiful relationship between the specific intensity, or 
brightness, Iν(s) (which is what we seek), and the spatial 
coherence function Vν(r1,r2) (which is what we must measure) is 
the foundation of aperture synthesis in radio astronomy.  

It looks like a Fourier Transform – and in the next section we 
look to see under what conditions it becomes one.

A key point is that the spatial coherence function (‘visibility’) is 
only dependent upon the separation vector:  r1 - r2. We 
commonly refer to this as the baseline:   
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Geometry – the perfect, and not-so-perfect

Case A:  A 2-dimensional measurement plane. 
Let us imagine the measurements of Vν(r1,r2) to be taken entirely on 
a plane.  Then a considerable simplification occurs if we arrange the 
coordinate system so one axis is normal to this plane. 

Let u, v, w be the rectangular components of the baseline vector, b, 
measured in units of the wavelength.  Orient this reference system so 
w is normal to the plane on which the visibilities are measured.
Then, in the same coordinate system, the unit direction vector, s, has 
components (the direction cosines) as follows:  
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We then get:

which is a 2-dimensional Fourier transform between the 
projected brightness:                                 and the spatial 
coherence function (visibility): Vν(u,v).

And we can now rely on a century of effort by mathematicians 
on how to invert this equation, and how much information we 
need to obtain an image of sufficient quality.  Formally, 
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With enough measures of V, we can derive I. 
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Case B:  A 3-dimensional measurement volume:
But what if the interferometer does not measure the coherence 
function within a plane, but rather does it through a volume?  
In this case, we adopt a slightly different coordinate system.  First 
we write out the full expression:  

(Note that this is not a 3-D Fourier Transform).  

Then, orient the coordinate system so that the w-axis points to the 
center of the region of interest, and make use of the small angle 
approximation:  
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The quadratic term in the phase can be neglected if it is much less 
than unity:  

Or, in other words, if the maximum angle from the center is less
than:  

then the relation between the Intensity and the Visibility again
becomes a 2-dimension Fourier transform:

12 <<θw

synBw
θλθ ~~1

max <

dldm
ml

mlIvuV vmulie )(2

22
'

1
),(),( +−

∫∫ −−
= πν

ν

15Rick Perley
Synthesis Imaging Summer School ‘02

Where the modified visibility is defined as:

And is, in fact, the ‘true’ visibility, projected onto the w=0 
plane, with the appropriate phase shift for the direction of the
image center. 

I leave to you the rest of Chapter 1 in the book.  It continues 
with the effects of discrete sampling, the effect of the antenna
power reception pattern, some essentials of spectroscopy, and 
a discourse into polarimetry.  

We now go on to consider a ‘real’ interferometer, and learn 
how these complex coherence functions are actually 
measured.
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The Stationary, Radio-Frequency Interferometer
The simplest possible interferometer is sketched below:

X

s s

An antennab
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In this expression, we use ‘A’ to denote the amplitude of the signal.
In fact, the amplitude is a function of the antenna gain and cable 
losses (which we ignore here), and the intensity of the source of 
emission.  

The spectral intensity, or brightness, is defined as the power per 
unit area, per unit frequency width, per unit solid angle, from 
direction s, at frequency ν.  Thus, (ignoring the antenna’s gains and 
losses), the power available at the voltage multiplier becomes:

The response from an extended source (or the entire sky) is 
obtained by integrating over the solid angle of the sky:
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This expression is close to what we are looking for.  But because 
the cosine function is even, the integration over the sky of the
correlator output will only be sensitive to the even part of the
brightness distribution – it is insensitive to the ‘odd’ part. 

We can construct an interferometer which is sensitive to only the 
odd part of the brightness by building a 2nd multiplier, and 
inserting a 90 degree phase shift into one of the signal paths, 
prior to the multiplier.  Then, a straightforward calculation 
shows the output of this correlator is: 

We now have two, independent numbers, each of which gives 
unique information about the sky brightness.  We can then define
a complex quantity – the complex visibility, by:
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This is the same expression we found earlier – allowing us to 
identify this complex function with the spatial coherence 
function.  So the function we need to measure, in order to 
recover the brightness of a distant radio source (the intensity) is 
provided by a complex correlator, consisting of a ‘cosine’ and 
‘sine’ multiplier. 

In this analysis, we have used real functions, then created the 
complex visibility by combining the cosine and sine outputs. 
This corresponds to what the interferometer does, but is clumsy 
analytically.  A more powerful technique uses the ‘analytic 
signal’, which for this case consists of replacing cos(ωt+ϕ) with 

, then taking the complex product <V1V2*>.  

A demonstration that this leads (more cleanly) to the desired 
result I leave to the student! 

)( ϕω +tie
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What’s going on here?  How can we conveniently think of this? 

The COS correlator can be thought of ‘casting’ a sinuoisidal 
fringe pattern onto the sky.  The correlator multiplies the source 
brightness by this wave pattern, and integrates (adds) the result 
over the sky. 

+   - +   - +  - +   - Fringe Sign

Fringe pattern cast on the source.

Orientation set by baseline geometry
Fringe separation set by baseline
length. 

The SIN correlator pattern is offset by ¼ wavelength. 
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The more widely separated the ‘fringes’, the ‘more of the source’ 
is seen in one fringe lobe.  

Widely separated fringes are generated by short spacings – hence 
the total flux of the source is visible only when the fringe 
separation is much greater than the source extent.  

Conversely, the fine details of the source structure are only 
discernible when the fringe separation is comparable to the fine
structure size and/or separation.  

To fully measure the source structure, a wide variety of baseline 
lengths and orientations is needed.  

One can build this up slowly with a single interferometer, or 
more quickly with a multi-telescope interferometer. 
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The Effect of Bandwidth.

Real interferometers must accept a range of frequencies (amongst
other things, there is no power in an infinitesimal bandwidth)! So 
we now consider the response of our interferometer over frequency. 
To do this, we first define the frequency response functions, G(ν),  
as the amplitude and phase variation of the signals paths over 
frequency.  Inserting these, and taking the complex product, we get:

Where I have left off the integration over angle for clarity.  
If the source intensity does not vary over frequency width, we get

where I have assumed the bandpasses are square and of width ∆ν.
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The sinc function is defined as: 
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This shows that the source emission is attenuated by the function 
sinc(x), known as the ‘fringe-washing’ function. Noting that τg ~ 
B/c sin(θ) ~ Bθ/λν ∼ (θ/θ res)/ν, we see that the attenuation is 
small when 

1<<∆

resθ
θ

ν
ν

when πx << 1

In words, this says that the attenuation is small if the fractional 
bandwidth times the angular offset in resolution units is less 
than unity. If the field of view is large, one must observe with
narrow bandwidths, in order to measure a correct visibility. 
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So far, the analysis has proceeded with the implicit assumption 
that the center of the image is stationary, and located straight up, 
perpendicular to the plane of the baseline.  This is an 
unnecessary restriction, and I now go on to the more general 
case where the center of interest is not ‘straight up’, and is 
moving. 

In fact, this is an elementary addition to what we’ve already 
done.  Since the effect of bandwidth is to restrict the region over 
which correct measures are made to a zone centered in the 
direction of zero time delay, it should be obvious that to observe 
in some other direction, we must add delay to move the 
unattenuated zone to the direction of interest.  That is, we must 
add time delay to the ‘nearer’ side of the interferometer, to shift 
the unattenuated response to the direction of interest. 
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The Stationary, Radio-Frequency Interferometer
with inserted time delay

X

s s

An antennab
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It should be clear from inspection that the results of the last section 
are reproduced, with the chromatic aberration now occurring about 
the direction defined by τ – τg = 0.  That is, the condition becomes:

∆θ/θres> ν/∆ν

Remembering the coordinate system discussed earlier, where the w
axis points to the reference center (s0),  assuming the introduced 
delay is appropriate for this center, and that the bandwidth losses 
are negligible, we have:
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Inserting these, we obtain:

This is the same relationship we derived in the earlier section.

The extension to a moving source (or, more correctly, to an 
interferometer located on a rotating object) is elementary – the 
delay term τ changes with time, so as to keep the peak of the 
fringe-washing function on the center of the region of interest.  

We will now complete our tour of elementary interferometers 
with a discussion of the effects of frequency downconversion.  
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Ideally, all the internal electronics of an interferometer would
work at the observing frequency (often called the ‘radio 
frequency’, or RF).

Unfortunately, this cannot be done in general, as high frequency
components are much more expensive, and generally perform 
more poorly, than low frequency components.  

Thus, nearly all radio interferometers use ‘downconversion’ to 
translate the radio frequency information to a lower frequency 
band.  For signals in the radio-frequency part of the spectrum, this 
can be done with almost no loss of information.  But there is an
important side-effect from this operation, which we now quickly 
review. 
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This is identical to the ‘RF’ interferometer, provided

φLO = ωLOτ
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Thus, the frequency-conversion interferometer (which is getting  
quite close to the ‘real deal’, will provide the correct measure of 
the spatial coherence, provided that the phase of the LO (local 
oscillator) on one side is offset by:

The reason this is necessary is that the delay, τ, has been added 
in the IF portion of the signal path. Thus, the physical delay 
needed to maintain broad-band coherence is present, but because 
it is added at the ‘wrong’ (IF) frequency, rather than at the ‘right’ 
(RF) frequendy, an incorrect phase has been inserted.   The 
necessary adjustment is that corresponding to the difference 
frequency (the LO). 

τπδφ LOf2=
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Some Concluding Remarks

I have given here an approach which is based on the idea of a 
complex correlator – two identical, parallel multiplies with a 90 
degree phase shift introduced in one.  This leads quite naturally to 
the formation of a complex number, which is identified with the 
complex coherence function.  

But, a complex correlator is not necessary, if one can find another 
way to obtain the two independent quantities (Cos, Sin, or Real,
Imaginary) needed.  

A single multiplier, on a moving (or rotating) platform will allow 
such a pair of measures – for the fringe pattern will then ‘move’ 
over the region of interest, and the sinusoidal output can be 
described with two parameters (e.g., amplitude and phase). 
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This approach might seem attractive (fewer multipliers) until 
one considers the rate at which data must be logged.  For an 
interferometer on the earth, the fringe frequency can be shown 
to be: 

Here, u is the E-W component of the baseline, and ωe is the 
angular rotation rate of the earth:  7.3 x 10-5 rad/sec.  For 
interferometers whose baselines exceed thousands of 
wavelengths, this fringe frequency would require very fast (and 
completely unnecessary) data logging and analysis.  

The purpose of ‘stopping’ the fringes is to permit a data 
logging rate which is based on the differential motion of 
sources about the center of the field of interest.  For the VLA 
in ‘A’ configuration, this is typically a few seconds. 
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