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Calibration and Editing
George Moellenbrock

• Why calibration and editing?
• Formalism: Visibilities, signals, matrices
• Laundry List of Calibration Components
• Practical Calibration Planning
• Editing and RFI
• Calibration Sequence Examples
• Evaluating Calibration Performance
• Summary
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Why Calibration and Editing?

• Synthesis radio telescopes, though well-designed, are not perfect (e.g., surface 
accuracy, receiver noise)

• Need to accommodate engineering (e.g., frequency conversion, digital 
electronics, etc.)

• Hardware or control software occasionally fails or behaves unpredictably
• Scheduling/observation errors sometimes occur (e.g., wrong source positions)
• Atmospheric conditions not ideal (not just bad weather)
• RFI

Determining instrumental properties (calibration)
is as important as 

determining radio source properties
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From Idealistic to Realistic

• Formally, we wish to obtain the visibility function, which we 
intend to invert to obtain an image of the sky:

• In practice, we correlate the electric field (voltage) samples t aken 
at pairs of telescopes (baselines i -j):

• Single radio telescopes are devices for collecting the signal xi(t) 
and providing it to the correlator.
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What signal is really collected?

• The net signal delivered by antenna i, xi(t), is a combination of the 
desired signal, si(t,l,m), corrupted by a factor Ji(t,l,m) and 
integrated over the sky , and noise, ni(t):

• Ji(t,l,m) is the product of a host of effects which we must 
calibrate

• In some cases, effects contained in the Ji(t,l,m) term corrupt the 
signal irreversibly and the resulting data must be edited

• Ji(t,l,m) is a complex number 
• Ji(t,l,m) is antenna-based
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Aside: Correlation of signals

• The correlation of two realistic signals from different antennas:

• Noise doesn’t correlate—even if ni>> si,  correlation isolates desired signals
• In integral, only si(t,l,m), from the same directions correlate, so order of integration and

signal product can be exchanged and terms re-ordered

• …and the auto-correlation of a signal from a single antenna:

• Desired signal not isolated from noise (less useful!)
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Formalism:  Describe both polarizations via matrices

• Need two polarizations (p,q) to fully describe sampled EM wave 
front, where p,q = R,L (circulars) or p,q = X,Y (linears)

• Some components of Ji involve mixing of polarizations, so dual-
polarization description desirable or even required

• So substitute:

• The Jones matrix thus corrupts a signal as follows: 
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Signal Correlation and Matrices

• Four correlations are possible from two polarizations.  The outer 
product (a ‘bookkeeping’ product) forms them:

• These four correlations (pp, pq, qp, qq) map to Stokes (I,Q,U,V) visibilities

• A very useful property of outer products:

• (where A,B,A’,B’ are matrices and/or vectors of appropriate dimensions):
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Signal Correlation and Matrices (cont)

• The outer product for the Jones matrix:

• Jij is a 4x4 Mueller matrix

• Antenna and array design thankfully driven by minimizing off-diagonal terms
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Signal Correlation and Matrices (cont)

• And finally, for fun, the correlation of corrupted signals:

• UGLY, but let’s think about individual calibration components in the signal 
domain, where the matrices are a factor of 2 less complicated…..
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Calibration Components

• Ji contains many components:
• F = ionospheric Faraday rotation
• T = tropospheric effects
• P = parallactic angle
• E = antenna voltage pattern
• D = polarization leakage
• G = electronic gain
• B = bandpass response

• Order of terms follows signal path
• Each term has matrix form of Ji with terms embodying its 

particular algebra (on- vs. off-diagonal terms, etc.)
• The full matrix equation (especially after correlation!) is daunting, 

but usually only need to consider the terms individually or in 
pairs, and rarely in open form (matrix formulation = shorthand)
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Ionospheric Faraday Rotation, F

• The ionosphere is birefringent ; one hand of circular polarization is 
delayed w.r.t. the other, introducing a phase shift:

• Rotates the linear polarization position angle
• More important at longer wavelengths: 

• More important at solar maximum and at sunrise/sunset, when iono sphere is 
most active

• Beware of ‘patchiness’ and other variability (e.g., with elevation changes)

» Namir’s lecture: “Long Wavelength Interferometry” (next Tuesday ) 
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Tropospheric Effects, T

• The troposphere causes polarization -independent amplitude and 
phase effects due to emission/opacity and refraction, respectively

• Typically 2 -3m excess path length at zenith compared to vacuum
• Most important at ν > 15 GHz where water vapor absorbs/emits
• More important nearer horizon where tropospheric path length greater
• Clouds, weather = variability in phase and opacity; may vary across array

• Water vapor radiometry?  Phase transfer from low to high frequen cies?
» Claire’s lecture: “mm-Wave Interferometry” (next Monday)
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Parallactic Angle, P

• Orientation of sky in telescope’s field of view
• Constant for equatorial telescopes
• Varies for alt-az-mounted telescopes:

• Rotates the position angle of linearly polarized radiation (c.f. F)
• Analytically known, and its variation provides leverage for determining 

polarization -dependent effects
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Antenna Voltage Pattern, E

• Antennas of all designs have direction-dependent gain

• Important when region of interest on sky comparable to or larger than λ/D
» Kumar’s lecture:  “Wide Field Imaging I” (next Monday)
» Debra’s lecture:  “Wide Field Imaging II” (next Monday)

• Important at lower frequencies where radio source surface density is greater and 
wide-field imaging techniques required

• Beam squint:  Ep and Eq not parallel, yielding spurious polarization 
• For convenience, direction dependence of polarization leakage (D) may be 

included in E (off-diagonal terms then non -zero)
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Polarization Leakage, D

• Polarizer is not ideal, so orthogonal polarizations not perfectly 
isolated

• Well-designed feeds have d ~ a few percent or less

• A geometric property of the feed design, so frequency dependent
• For R,L systems, total-intensity imaging affected as ~dQ, dU, so only important 

at high dynamic range (because Q,U~d, typically)
• For R,L systems, linear polarization imaging affected as ~dI, so almost always 

important
» Greg’s lecture:  “Polarization in Interferometry” (today!)
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Electronic Gain, G

• Catch-all for most amplitude and phase effects introduced by 
antenna electronics (amplifiers, mixers, quantizers, digitizers)

• Most commonly treated calibration component

• Dominates other effects for standard observations
• Includes scaling from engineering to radioastronomy units (Jy)
• Often includes ionospheric and tropospheric effects which are typically difficult 

to separate unto themselves

• Excludes frequency dependent effects (see B)







=

q

p
p q

g
g

G
0

0

G. Moellenbrock, Synthesis Summer 
School, 18 June 2002

17

Bandpass Response, B

• G-like component describing frequency-dependence of antenna 
electronics, etc.

• Filters used to select frequency passband not square

• Optical and electronic reflections introduce ripples across band
• Typically (but not necessarily) normalized
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More-sophisticated effects

• Errors in geometric/clock models in correlator cause poor phase 
compensation

• Routine problem in VLBI solved by fringe-fitting:  parameterization of G to 
include phase terms which are linear in time and frequency

» Craig’s lecture:  “VLBI” (Thursday)

• Baseline-based errors do not decompose into antenna-based 
components

• Most digital correlators designed to limit such effects to well-understood and 
uniform scaling laws (absorbed in G)

• Additional errors can result from averaging in time and frequency over variation 
in antenna-based effects and visibilities (practical instruments are finite!)

• Correlated noise (e.g., RFI)
• Virtually indistinguishable from source structure effects
• Geodetic observers consider determination of radio source structure—a baseline-

based effect—as a required calibration if antenna positions are to be determined 
accurately
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Putting it all back together

• In the correlation of signals, like terms from the different antennas 
are conveniently grouped:

• The total Measurement Equation has the form:

• S maps the Stokes vector, I, to the polarization basis of the instrument
• Mij and Aij are multiplicative and additive baseline-based errors, respectively
• In general, all Jij may be direction-dependent, so inside the integral….
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Realizing practical calibration

• …but in practice, we often ignore the direction dependence of the 
calibration components and factor them out of the integral 
(dropping E ij).  The Measurement Equation then becomes a 
relation between the observed and ideal visibilities: 

• If the ideal visibilities are known (e.g., by choosing calibration 
source of known structure), we can solve for individual 
components using those we already know (if any), e.g.:
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Realizing practical calibration (cont)

• Formally, solving for any component is the same non-linear 
fitting problem:

• Algebraic particulars are stored safely and conveniently inside the matrix 
formalism (out of sight, out of mind!)

• Viability of the solution relies on the underlying algebra (hard wired in 
calibration applications) and proper calibration observations

• The relative importance of the different components enables deferring or even 
ignoring the more subtle effects
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Planning for Good Calibration

• A priori calibrations (provided by the observatory)
• Antenna positions, earth orientation and rate
• Clocks
• Antenna pointing, gain, voltage pattern
• Calibrator coordinates, flux densities, polarization properties

• Absolute calibration?
• Very difficult, requires heroic efforts by visiting observers an d observatory 

scientific and engineering staff

• Cross-calibration a better choice
• Observe nearby point sources against which calibration components can be 

solved, and transfer solutions to target observations
• Choose appropriate calibrators for different components; usually point sources 

because we can predict their visibilities

• Choose appropriate timescales for each component
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Calibrator Rules of Thumb

• T, G:
• Strong and point-like sources, as near to target source as possible
• Observe often enough to track phase and amplitude variations: ca libration intervals of up to 

10s of minutes at low frequencies (beware of ionosphere!), as short as 1 minute or less at 
high frequencies

• Observe at least one calibrator of known flux density at least once
• B:

• Strong enough for good sensitivity in each channel (often, T, G calibrator is ok)
• If bandwidth is wide, should be point-like to avoid visibility changes across band
• Observe often enough to track variations (e.g., waveguide reflections change with 

temperature and are thus a function of time-of-day)
• D:

• Best calibrator is strong and unpolarized
• If polarized, observe over a broad range of parallactic angle to disentangle Ds and source 

polarization (often, T, G calibrator is ok)

• F:
• Choose strongly polarized source and observe often enough to track variation
• If ionosphere is stable, rely on ionosonde observations for empirical corrections
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Data Examination and Editing

• After observation, initial data examination and editing very 
important

• Will observations meet goals for calibration and science requirements?
• Some real-time flagging occurred during observation (antennas off-source, LO 

out-of-lock, etc.).  Any such bad data left over?  (check operator’s lo gs)
• Any persistently ‘dead’ antennas (Ji=0 during otherwise normal observing)?  

(check operator’s logs)
• Amplitude and phase should be continuously varying —edit outliers
• Any antennas shadowing others?  Edit such data.
• Be conservative: those antennas/timeranges which are bad on calibrators are 

probably bad on weak target sources—edit them
• Periods of poor weather?  (check operator’s log)
• Distinguish between bad data and poorly-calibrated data.  E.g., some antennas 

may have significantly different amplitude response which may no t be fatal—it 
may only need to be calibrated

• Radio Frequency Interference (RFI)?
• Choose reference antenna wisely (ever-present, stable response)
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A Data Editing Example

• msplot in aips++
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Radio Frequency Interference

• RFI originates from man-made signals generated in the antenna or 
by external sources (e.g., satellites, cell-phones, radio and TV 
stations, etc.)

• Obscures natural emission in spectral line observations
• Adds to total noise power in all observations, thus decreasing s ensitivity to 

desired natural signal, and complicating amplitude calibration
• Though a contribution to the n i term, can correlate between antennas if of 

common origin or baseline short enough 

• RFI Mitigation
• Careful electronics design in antennas
• Observatories world-wide lobbying for spectrum management
• Various on-line and off-line mitigation techniques under study
• Choose interference-free frequencies (try to find 50 MHz of clean spectrum in 

the 1.6 GHz band!)
• Observe continuum experiments in spectral-line modes so bad channels can be 

edited
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Radio Frequency Interference (cont.)

• Growth of telecom industry threatening radioastronomy!
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Calibration Sequence I

• Observation: total intensity spectral line imaging of weak target
• A weak target source (1)
• A nice near-by point-like G, T calibrator (2), observed alternately, but too weak 

for good B calibration (flux density unknown)
• Three observations of strong flux density calibrator (3) which is also good for B 

calibration 

• Schedule (each digit is a fixed duration): 
33-2-111-2-111-2-111-2-111-2-33-2-111-2-111-2-111-2-111-2-111-2-33

• Calibration sequence:
• On 3, solve for G:
• On 3, solve for B, using G:
• On 2, solve for G, using B:
• Scale 2’s Gs according to 3’s Gs: 
• Transfer B, G to 1:
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Calibration Sequence II

• Observation: full-polarization imaging of weak target
• A weak target source (1)
• A nice, near-by, point-like, G, T calibrator (2), observed alternately, ok for D 

calibration, too (flux density and polarization unknown)
• Three observations of strong flux density calibrator 

• Schedule (each digit is a fixed duration): 
33-2-1111-2-1111-2-1111-2-1111-2-33-2-1111-2-1111-2-1111-2-1111-2-33

• Calibration sequence:
• On 2 & 3, solve for G, using P:
• Apply G to 2, get improved poln model: 
• On 2, solve for D, using P, G, & new model:

• Scale 2’s Gs according to 3’s Gs: 
• Transfer D, G to 1, use P:
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Evaluating Calibration Performance

• Are solutions continuous?
• Noise-like solutions are just that—noise
• Discontinuities indicate instrumental glitches
• Any additional editing required?

• Are calibrator data fully described by antenna-based effects?
• Phase and amplitude closure errors are the baseline-based residuals; see Chapter  

5 in book

• Are calibrators sufficiently point-like?  If not, self-calibrate:  model calibrator  
visibilities (by imaging, deconvolving and transforming) and re-solve for 
calibration; iterate to isolate source structure from calibration components

» Jim’s lecture:  “Self-Calibration” (Wednesday)

• Any evidence of unsampled variation?  Is interpolation of 
solutions appropriate?

• Self-calibration may be required, if possible
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G Solution Examples
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B Solution Examples
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Effect of Calibration on Visibility Data
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Effect of Calibration in the Image Plane

Uncalibrated                                     Calibrated
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Summary

• Determining calibration is as important as determining source 
structure—can’t have one without the other

• Data examination and editing and important part of calibration
• Calibration dominated by antenna-based effects

• Calibration formalism algebra-rich, but can be described 
piecemeal in comprehendible segments, according to well -defined 
effects

• Calibration determination is a single standard fitting problem
• Point sources are the best calibrators
• Observe calibrators according requirements of components

• Calibration sequences a juggling act of effects and corrections


