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Imaging and deconvolutionImaging and deconvolution

OverviewOverview

•• How do we make images of the radio sky from measurements of the How do we make images of the radio sky from measurements of the 
coherence function of the electric field measured by our antennacoherence function of the electric field measured by our antennas?s?

ImagingImaging

•• Go from samples of visibility function to “dirty” imageGo from samples of visibility function to “dirty” image

DeconvolutionDeconvolution

•• Go from dirty image to deconvolved imageGo from dirty image to deconvolved image

OutlineOutline

•• The relationship between sky brightness and visibilityThe relationship between sky brightness and visibility

•• Sampling of the Fourier planeSampling of the Fourier plane

•• Fourier inversionFourier inversion
–– Weighting schemesWeighting schemes
–– The problem with the dirty image The problem with the dirty image -- sidelobessidelobes

•• DeconvolutionDeconvolution
–– CLEANCLEAN
–– Maximum Entropy MethodMaximum Entropy Method

–– Algebraic deconvolutionAlgebraic deconvolution
–– Other methodsOther methods

•• Some examplesSome examples

Formal descriptionFormal description

•• For small fields of view, the visibility function is the 2For small fields of view, the visibility function is the 2--D D 
Fourier transform of the sky brightness:Fourier transform of the sky brightness:

•• We sample the Fourier plane at a discrete number of points:We sample the Fourier plane at a discrete number of points:

•• So the inverse transform is:So the inverse transform is:

•• Applying the Fourier convolution theorem:Applying the Fourier convolution theorem:

•• where B is the point spread function:where B is the point spread function:
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Convolution theoremConvolution theorem

•• Inverse Fourier transform of sampled visibilities yields the truInverse Fourier transform of sampled visibilities yields the true e 
sky convolved with the point spread functionsky convolved with the point spread function

•• Different ways to understand this effect:Different ways to understand this effect:

–– Incomplete Fourier sampling => missing information about the Incomplete Fourier sampling => missing information about the 
sky brightnesssky brightness

–– Array Array ≡≡ masked aperture => diffraction patterns in image planemasked aperture => diffraction patterns in image plane

To find the true sky brightness   , we must “To find the true sky brightness   , we must “deconvolvedeconvolve ” the point ” the point 

spread function     from the dirty imagespread function     from the dirty image

•• What are the properties of the point spread function?What are the properties of the point spread function?

–– “sidelobes” with infinite extent“sidelobes” with infinite extent

–– Invisible distributionsInvisible distributions

DIB
I

A digression: Fast Fourier TransformsA digression: Fast Fourier Transforms

–– FFTsFFTs are much faster than simple Fourier summation but a are much faster than simple Fourier summation but a 
regular regular griddinggridding is requiredis required

–– Visibility data are irregularly reVisibility data are irregularly re--sampled so we must resample sampled so we must resample 
the data on a regular gridthe data on a regular grid

–– ConvolutionalConvolutional griddinggridding is used: the discrete visibility samples are is used: the discrete visibility samples are 
notionally smoothed to a continuous function, and then notionally smoothed to a continuous function, and then 
resampledresampled at the regular grid points.at the regular grid points.

–– TimeTime--consuming but generally worthwhileconsuming but generally worthwhile

–– Some fraction of the power is applied to the incorrect spatial Some fraction of the power is applied to the incorrect spatial 
frequencies: frequencies: aliasingaliasing or or spurious sourcesspurious sources, usually at a very low , usually at a very low 
levellevel

–– Long description in Long description in Synthesis Imaging IISynthesis Imaging II

SidelobesSidelobes

•• From the sampling pattern, we can find that:From the sampling pattern, we can find that:

•• So the point spread function is always a collection of coSo the point spread function is always a collection of co--
sinusoids, and extends forever in the image planesinusoids, and extends forever in the image plane

•• At the center,At the center,

•• The PSF has a width  The PSF has a width  

•• The RMS level is ~ The RMS level is ~ 

••
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More on sidelobesMore on sidelobes

•• FarFar--out sidelobes:out sidelobes:
From the Fourier derivative theorem, if the sampling pattern hasFrom the Fourier derivative theorem, if the sampling pattern has a a 

discontinuous first derivative, the the drops off as the inversediscontinuous first derivative, the the drops off as the inverse of the of the 
radius in the image planeradius in the image plane

•• CloseClose--in sidelobes:in sidelobes:
Suppose that the sampling pattern is bounded by a circle, then tSuppose that the sampling pattern is bounded by a circle, then the PSF he PSF 

close in must resemble the inverse Fourier transform of a circleclose in must resemble the inverse Fourier transform of a circle : first : first 
order Bessel function divided by radius: order Bessel function divided by radius: JincJinc functionfunction

•• Can apply weighting to ameliorate these two effects:Can apply weighting to ameliorate these two effects:

••
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WeightingWeighting

•• Choose the weighting function to alter properties of PSF:Choose the weighting function to alter properties of PSF:

•• Uniform weightingUniform weighting

–– To minimize RMS sidelobes over entire image requires:To minimize RMS sidelobes over entire image requires:

–– But SNR suffers...But SNR suffers...

( )kkk vuw ,1 ρ=

WeightingWeighting

•• Natural weightingNatural weighting

–– To minimize noise over entire image requires:To minimize noise over entire image requires:

•• Briggs (robust) weightingBriggs (robust) weighting

–– To minimize noise plus sidelobes for point source of strength   To minimize noise plus sidelobes for point source of strength   
requires   requires   

••
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More on weightingMore on weighting

•• SuperSuper--uniform weightinguniform weighting

–– Can choose to minimize sidelobes over smaller region than entireCan choose to minimize sidelobes over smaller region than entire
imageimage

–– Divide out density averaged over large region in Fourier spaceDivide out density averaged over large region in Fourier space

•• All weighting decreases the sensitivity relative to natural All weighting decreases the sensitivity relative to natural 
weightingweighting

•• Uniform weighting increases the resolution relative to natural Uniform weighting increases the resolution relative to natural 
weightingweighting

•• Briggs’ weighting allows a compromise between sensitivity Briggs’ weighting allows a compromise between sensitivity 
and resolutionand resolution

Briggs’ curvesBriggs’ curves

Examples of weightingExamples of weighting TaperingTapering

•• Can go further, and multiply by a desired sampling shape:Can go further, and multiply by a desired sampling shape:

•• For example, the desired shape could be a For example, the desired shape could be a GaussianGaussian, which , which 
transforms to a transforms to a GaussianGaussian, and therefore falls away rapidly in  , and therefore falls away rapidly in  
the image planethe image plane

•• BUT, the underlying sampling pattern eventually wins...BUT, the underlying sampling pattern eventually wins...
Weighting and tapering help, but cannot entirely remedy the limiWeighting and tapering help, but cannot entirely remedy the limitations tations 

in the image due to finite Fourier plane samplingin the image due to finite Fourier plane sampling
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Invisible distributionsInvisible distributions

•• There are sky brightness distributions     that are invisible:There are sky brightness distributions     that are invisible:

•• This occurs when the spatial frequencies          in the invisibThis occurs when the spatial frequencies          in the invisible le 
distribution      are not sampleddistribution      are not sampled

•• Some examples:Some examples:

–– Total integrated brightness (usually but not always)Total integrated brightness (usually but not always)

–– Short Short spacingsspacings below the below the minimumminimum separation of antennasseparation of antennas

–– Long Long spacingsspacings beyond the beyond the maximummaximum separation of antennasseparation of antennas

–– Holes in the sampling patternHoles in the sampling pattern

–– Any combination of the above!Any combination of the above!

•• No No linearlinear method can ever recover the invisible distributionsmethod can ever recover the invisible distributions
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How to find invisible distributions?How to find invisible distributions?

•• Apply Apply a prioria priori knowledge about the sky brightnessknowledge about the sky brightness

•• What do we know?What do we know?

–– Sky brightness is positive, sum of coSky brightness is positive, sum of co--sinusoids is not necessarilysinusoids is not necessarily

–– Sky is mostly dark, sum of coSky is mostly dark, sum of co--sinusoids is notsinusoids is not

–– Sky is collection of point sources, sum of coSky is collection of point sources, sum of co--sinusoids is notsinusoids is not

–– Sky may be smooth, sum of coSky may be smooth, sum of co--sinusoids is probably notsinusoids is probably not

•• NonNon--linearlinear deconvolution algorithms solve for an estimate of deconvolution algorithms solve for an estimate of 
the true sky brightness     , from the convolution equation, the true sky brightness     , from the convolution equation, 
while applying while applying a prioria priori constraints on the final solutionconstraints on the final solution

I

Popular deconvolution algorithmsPopular deconvolution algorithms

•• CLEAN: CLEAN: 

–– sky is composed of point sources on a dark skysky is composed of point sources on a dark sky

–– sky is composed of resolved sources of known extent on a dark sky is composed of resolved sources of known extent on a dark 
skysky

•• MultiMulti--scale CLEAN:scale CLEAN:
–– sky is composed of smooth, limited extent blobs on a dark skysky is composed of smooth, limited extent blobs on a dark sky

•• Maximum Entropy Method: Maximum Entropy Method: 

–– sky is smooth and positivesky is smooth and positive

•• NonNon--negative least squares:negative least squares:

–– sky is nonsky is non--negative and compactnegative and compact

•• Hybrid algorithms:Hybrid algorithms:

–– Some combination of the above...Some combination of the above...

Classic CLEANClassic CLEAN

•• A prioriA priori constraint: constraint: sky is composed of point sources on a dark sky is composed of point sources on a dark 
skysky

•• Uses iterative algorithm to find sequence of point sourcesUses iterative algorithm to find sequence of point sources

–– Find peak in imageFind peak in image

–– Subtract a PSF centered and scaled appropriately to remove the Subtract a PSF centered and scaled appropriately to remove the 
effect of the brightness point, store component thus foundeffect of the brightness point, store component thus found

–– If any significant points left, return to first stepIf any significant points left, return to first step

–– Convolve point components by “Clean” point spread functionConvolve point components by “Clean” point spread function
•• Same width as dirty Same width as dirty psfpsf but no sidelobesbut no sidelobes

–– Add residuals image to obtain “restored” imageAdd residuals image to obtain “restored” image

•• Classic CLEAN algorithm due to Classic CLEAN algorithm due to HogbomHogbom (1974)(1974)

Classic CLEAN: 10 iterations, gain=1.0Classic CLEAN: 10 iterations, gain=1.0 Fourier transform of Classic CLEANFourier transform of Classic CLEAN
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Classic CLEAN: Classic CLEAN: GaussianGaussian modelmodel Classic CLEAN: disk modelClassic CLEAN: disk model

Classic CLEAN: disk modelClassic CLEAN: disk model Algorithm comparisonsAlgorithm comparisons

Classic CLEAN detailsClassic CLEAN details

•• Usually stabilize algorithm by subtracting only a fraction (the Usually stabilize algorithm by subtracting only a fraction (the 
loop gain ~ 0.1) of the strength of a point sourceloop gain ~ 0.1) of the strength of a point source

•• Usually stop either after finding a given number of Usually stop either after finding a given number of 
components or when the peak residual is reaches a threshold, components or when the peak residual is reaches a threshold, 
such as a multiple of the intrinsic noise levelsuch as a multiple of the intrinsic noise level

•• Schwarz (1978) showed that Schwarz (1978) showed that 
–– Classic CLEAN must converge Classic CLEAN must converge i.e. i.e. the peak residual must the peak residual must 

decreasedecrease

–– Classic CLEAN is equivalent to a least square fit of sinusoids tClassic CLEAN is equivalent to a least square fit of sinusoids to o 
the visibility datathe visibility data

•• Excellent at reducing identifying and correcting for point Excellent at reducing identifying and correcting for point 
sources, less effective for extended emission in neighboring sources, less effective for extended emission in neighboring 
pixelspixels

Classic Window CLEANClassic Window CLEAN

•• A prioriA priori constraint: constraint: sky brightness extent is known a priorisky brightness extent is known a priori

•• Uses Classic CLEAN iterative algorithm to find sequence of Uses Classic CLEAN iterative algorithm to find sequence of 
point sources in restricted region delimited by CLEAN boxespoint sources in restricted region delimited by CLEAN boxes

•• Allows close specification of source support Allows close specification of source support contraintscontraints

•• Very useful for poor Fourier plane coverage Very useful for poor Fourier plane coverage e.g.e.g. VLBIVLBI
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CLEAN variantsCLEAN variants

•• Clark CLEAN: faster variant of Clark CLEAN: faster variant of HogbomHogbom CLEANCLEAN

–– Split into two stagesSplit into two stages

–– Cleans subset of brightness points in minor cycleCleans subset of brightness points in minor cycle

–– Subtracts sidelobes completely using Fast Fourier Transform Subtracts sidelobes completely using Fast Fourier Transform 
convolution in major cycleconvolution in major cycle

–– 0.10.1--10 times faster than 10 times faster than HogbomHogbom

•• SchwabSchwab--Cotton CLEAN: another variant of Clark CLEANCotton CLEAN: another variant of Clark CLEAN

–– Clark minor cycleClark minor cycle

–– Major cycle subtracts components directly from visibility dataMajor cycle subtracts components directly from visibility data

–– Sometimes faster, always more accurate than Clark CLEANSometimes faster, always more accurate than Clark CLEAN

–– Can clean multiple fieldsCan clean multiple fields

•• SteerSteer--DewdneyDewdney--Ito: variant of Clark CLEANIto: variant of Clark CLEAN

–– Minor cycle simply takes scaled version of pixels brighter than Minor cycle simply takes scaled version of pixels brighter than 
some trim levelsome trim level

SchwabSchwab--Cotton CLEANCotton CLEAN

MultiMulti--scale CLEANscale CLEAN

•• A prioriA priori constraint: constraint: sky is composed of smooth blobs on a dark sky is composed of smooth blobs on a dark 
backgroundbackground

•• Decompose sky into summation of blobs of various sizes Decompose sky into summation of blobs of various sizes e.g. e.g. 
truncated parabolas of width 0, 3, 10, 30  pixels.truncated parabolas of width 0, 3, 10, 30  pixels.

•• Perform one CLEAN algorithm for each scale size in parallel, Perform one CLEAN algorithm for each scale size in parallel, 
and choose blob that gives the greatest reduction in peak and choose blob that gives the greatest reduction in peak 
residualresidual

•• Excellent at identifying largeExcellent at identifying large--scale coherent structurescale coherent structure

•• Residuals are quite noiseResiduals are quite noise--likelike

MultiMulti--scale CLEANscale CLEAN

Clark Clean

Clark Residuals

MS Clean

MS Residuals

MultiMulti--scale CLEANscale CLEAN

Convergence

on various

scale sizes.

Clean gain=0.5

Maximum Entropy MethodMaximum Entropy Method

•• A prioriA priori constraint: constraint: sky is smooth and positivesky is smooth and positive

•• Algorithm maximize a measure of smoothness (entropy) while Algorithm maximize a measure of smoothness (entropy) while 
solving the convolution equationsolving the convolution equation

•• where      is a “default” image which is the image obtained where      is a “default” image which is the image obtained 
with no data. Usually a flat default image is used.with no data. Usually a flat default image is used.

•• NonNon--linear optimization problem: AIPS, AIPS++ use Cornwelllinear optimization problem: AIPS, AIPS++ use Cornwell--
Evans (1983) algorithmEvans (1983) algorithm

•• Excellent for large diffuse emissionExcellent for large diffuse emission

•• Default image is very powerful for incorporating prior imagesDefault image is very powerful for incorporating prior images

•• Extensible to multiple simultaneous convolution equationsExtensible to multiple simultaneous convolution equations
–– See Mosaicing lectureSee Mosaicing lecture
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Maximum Entropy Method: Maximum Entropy Method: GaussianGaussian Maximum Entropy Method: DiskMaximum Entropy Method: Disk

Maximum Entropy Method detailsMaximum Entropy Method details

•• Fast and efficient for million or more pixelsFast and efficient for million or more pixels

•• Excellent on smooth extended emission with limited dynamic Excellent on smooth extended emission with limited dynamic 
rangerange

•• Point sources cause problemsPoint sources cause problems

–– Should be removed using CLEAN before applying MEMShould be removed using CLEAN before applying MEM

•• Lots written about philosophy and meaning of MEMLots written about philosophy and meaning of MEM

Algebraic deconvolutionAlgebraic deconvolution

•• PixellatePixellate convolution equations and represent via linear convolution equations and represent via linear 
algebra              where the matrix     represents the point algebra              where the matrix     represents the point 
spread function,     is the unknown image as a vector, and    spread function,     is the unknown image as a vector, and    
is the dirty image as a vector.is the dirty image as a vector.

•• The problem is then to solve this linear equation using various The problem is then to solve this linear equation using various 
constraintsconstraints

–– e.g.e.g. support constraints: support constraints: we know that the emission is nonwe know that the emission is non--zero zero 
for only some areasfor only some areas

•• Solve equation using Solve equation using e.g.e.g. Singular Value DecompositionSingular Value Decomposition

–– usually inadequate to get reasonable result but useful as usually inadequate to get reasonable result but useful as 
indication of conditioning of problemindication of conditioning of problem

bxA = A
x b

Singular Value DecompositionSingular Value Decomposition NonNon--Negative Least SquaresNegative Least Squares

•• Impose Impose nonnon--negativitynegativity using any of a variety of solversusing any of a variety of solvers

Solve                 subject to Solve                 subject to 

•• Works well for high dynamic range images of moderately Works well for high dynamic range images of moderately 
resolved sources (Briggs’ thesis, 1995)resolved sources (Briggs’ thesis, 1995)

bxA = 0≥x
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NonNon--Negative Least Squares: Negative Least Squares: GaussianGaussian NonNon--Negative Least Squares: DiskNegative Least Squares: Disk

NonNon--Negative Least Squares: SourceNegative Least Squares: Source NonNon--Negative Least Squares: Party trickNegative Least Squares: Party trick

ExampleExample

•• VLBA simulated observations of M87VLBA simulated observations of M87--like jet sourcelike jet source

•• Will showWill show
–– UV coverageUV coverage
–– Visibility functionVisibility function
–– Point Spread FunctionPoint Spread Function
–– Dirty imageDirty image
–– Clean imagesClean images
–– Maximum Entropy imagesMaximum Entropy images

Original and smoothed modelOriginal and smoothed model
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Fourier plane samplingFourier plane sampling Point Spread FunctionPoint Spread Function

Original model and Dirty imageOriginal model and Dirty image Classic CLEAN: 5000 and 20000 compsClassic CLEAN: 5000 and 20000 comps

Window CLEAN: 5000 and 20000 compsWindow CLEAN: 5000 and 20000 comps MEM: failure of superMEM: failure of super--resolutionresolution
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MEM: boxed, with point source removedMEM: boxed, with point source removed Original model and best imageOriginal model and best image

Best Clean and Best MEMBest Clean and Best MEM ExampleExample

•• VLA multiVLA multi--snapshot observation of Hydra Asnapshot observation of Hydra A--like sourcelike source

•• Will showWill show
–– UV coverageUV coverage
–– Visibility functionVisibility function
–– Point Spread FunctionPoint Spread Function
–– Dirty imageDirty image
–– Clean imagesClean images
–– Maximum Entropy imagesMaximum Entropy images

Model, PSF, Dirty image,Model, PSF, Dirty image,
CLEAN, MEM, MultiCLEAN, MEM, Multi--scale CLEANscale CLEAN SummarySummary

•• Incomplete Fourier plane coverage leads to diffraction Incomplete Fourier plane coverage leads to diffraction 
patterns in imagespatterns in images

•• Deconvolution algorithms can correct for these patternsDeconvolution algorithms can correct for these patterns

•• A number of complementary algorithms exist for image A number of complementary algorithms exist for image 
deconvolutiondeconvolution
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