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Imaging and deconvolution

Tim Cornwell, NRAO

Overview

How do we make images of the radio sky from measurements of the
coherence function of the electric field measured by our antennas?

Imaging

"-'-ngu....._.____._. PP

Go from samples of visibility function to “dirty” image

Deconvolution

Go from dirty image to deconvolved image

Outline

Sampling of the Fourier plane
Fourier inversion

Weighting schemes

The problem with the dirty image - sidelobes
Deconvolution

CLEAN

Maximum Entropy Method

Algebraic deconvolution

Other methods

Some examples

The relationship between sky brightness and visibility

Formal description

For small fields of view, the visibility function is the 2-D
Fourier transform of the sky brightness:

Ve v= o010 mpel PU My
We sample the Fourier plane at a discrete number of points:
S(u,v) =a d(u- uy )d (v- )
So the inverse transf(rrm is:
12(xy)=F [s{u,v)» )]
Applying the Fourier convolution theorem:
1P(xy)=B(xy)A1(xy)
where B is the point spread function:
B(x,y)=F "*[S(u,v)]
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Convolution theorem

Inverse Fourier transform of sampled visibilities yields the true
sky convolved with the point spread function

Different ways to understand this effect:

Incomplete Fourier sampling => missing information about the
sky brightness

Array © masked aperture => diffraction patterns in image plane
To find the true sky brightness [, we must “deconvolve” the point
spread function B from the dirty image | D
What are the properties of the point spread function?
“sidelobes” with infinite extent

Invisible distributions

A digression: Fast Fourier Transforms

FFTs are much faster than simple Fourier summation but a
regular gridding is required

Visibility data are irregularly re-sampled so we must resample
the data on a regular grid

Convolutional gridding is used: the discrete visibility samples are
notionally smoothed to a continuous function, and then
resampled at the regular grid points.

Time-consuming but generally worthwhile

Some fraction of the power is applied to the incorrect spatial
frequencies: aliasing or spurious sources, usually at a very low
level

Long description in Synthesis Imaging 11

Sidelobes

From the sampling pattern, we can find that:

B(x,y)= La cosugx +v y)

K k

So the point spread function is always a collection of co-
sinusoids, and extends forever in the image plane
At the center, B(x,y)~1
The PSF has a width DX~Wuma Dy ~Y Vi
The RMS level is ~ /WK

More on sidelobes

Far-out sidelobes:

From the Fourier derivative theorem, if the sampling pattern has a
discontinuous first derivative, the the drops off as the inverse of the
radius in the image plane

Close-in sidelobes:

Suppose that the sampling pattern is bounded by a circle, then the PSF
close in must resemble the inverse Fourier transform of a circle : first
order Bessel function divided by radius: Jinc function

Can apply weighting to ameliorate these two effects:
3w, cogu x+v,y)
K

B(xy)= ™
k

Close-in sidelobes

Close-in sidelobes
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Weighting

Choose the weighting function to alter properties of PSF:
Uniform weighting

To minimize RMS sidelobes over entire image requires:

W =31 (U, vic)
But SNR suffers...

Weighting

Natural weighting

To minimize noise over entire image requires:

- 2
We —1/'5 3
Brigas (robust) weighting

To minimize noise plus sidelobes for point source of strength £
requires

w =[5 () s €]

More on weighting

Super-uniform weighting

Can choose to minimize sidelobes over smaller region than entire
image

Divide out density averaged over large region in Fourier space

All weighting decreases the sensitivity relative to natural
weighting

Uniform weighting increases the resolution relative to natural
weighting

Briggs’ weighting allows a compromise between sensitivity
and resolution

Briggs’ curves

Examples of weighting

Tapering

Can go further, and multiply by a desired sampling shape:
we =T(U V)T (uvie)

For example, the desired shape could be a Gaussian, which
transforms to a Gaussian, and therefore falls away rapidly in

the image plane
BUT, the underlying sampling pattern eventually wins...

Weighting and tapering help, but cannot entirely remedy the limitations
in the image due to finite Fourier plane sampling
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Invisible distributions

There are sky brightness distributions Z that are invisible:
BAZ=0

This occurs when the spatial frequencies (U,V) in the invisible

distribution Z are not sampled

Some examples:
Total integrated brightness (usually but not always)
Short spacings below the minimum separation of antennas
Long spacings beyond the maximum separation of antennas
Holes in the sampling pattern
Any combination of the above!

No linear method can ever recover the invisible distributions
DAIP=DA[BA(1+Z)=DABAI

How to find invisible distributions?

Apply a priori knowledge about the sky brightness

What do we know?
Sky brightness is positive, sum of co-sinusoids is not necessarily
Sky is mostly dark, sum of co-sinusoids is not
Sky is collection of point sources, sum of co-sinusoids is not
Sky may be smooth, sum of co-sinusoids is probably not

Non-linear deconvolution algorithms solve for an estimate of
the true sky brightness | , from the convolution equation,
while applying a priori constraints on the final solution

Popular deconvolution algorithms

CLEAN:
sky is composed of point sources on a dark sky

sky is composed of resolved sources of known extent on a dark
sky

Multi-scale CLEAN:
sky is composed of smooth, limited extent blobs on a dark sky
Maximum Entropy Method:
sky is smooth and positive
Non-negative least squares:
sky is non-negative and compact
Hybrid algorithms:

Some combination of the above...

Classic CLEAN

A priori constraint: sky is composed of point sources on a dark

sky

Uses iterative algorithm to find sequence of point sources
Find peak in image

Subtract a PSF centered and scaled appropriately to remove the
effect of the brightness point, store component thus found

If any significant points left, return to first step

Convolve point components by “Clean” point spread function
= Same width as dirty psf but no sidelobes

Add residuals image to obtain “restored” image

Classic CLEAN algorithm due to Hogbom (1974)

Classic CLEAN: 10 iterations, gain=1.0

Fourier transform of Classic CLEAN
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Classic CLEAN: Gaussian model
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Classic CLEAN: disk model

Classic CLEAN: disk model

Algorithm comparisons

Classic CLEAN details

Usually stabilize algorithm by subtracting only a fraction (the
loop gain ~ 0.1) of the strength of a point source

Usually stop either after finding a given number of
components or when the peak residual is reaches a threshold,
such as a multiple of the intrinsic noise level

Schwarz (1978) showed that
Classic CLEAN must convergei.e. the peak residual must
decrease

Classic CLEAN is equivalent to a least square fit of sinusoids to
the visibility data

Excellent at reducing identifying and correcting for point
sources, less effective for extended emission in neighboring
pixels

Classic Window CLEAN

A priori constraint: sky brightness extent is known a priori

Uses Classic CLEAN iterative algorithm to find sequence of
point sources in restricted region delimited by CLEAN boxes

Allows close specification of source support contraints

Very useful for poor Fourier plane coverage e.g. VLBI
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CLEAN variants Schwab-Cotton CLEAN

Clark CLEAN: faster variant of Hogbom CLEAN
Split into two stages
Cleans subset of brightness points in minor cycle

Subtracts sidelobes completely using Fast Fourier Transform
convolution in major cycle

0.1-10 times faster than Hogbom

Schwab-Cotton CLEAN: another variant of Clark CLEAN
Clark minor cycle
Major cycle subtracts components directly from visibility data
Sometimes faster, always more accurate than Clark CLEAN
Can clean multiple fields

Steer-Dewdney-Ito: variant of Clark CLEAN

Minor cycle simply takes scaled version of pixels brighter than
some trim level

Multi-scale CLEAN Multi-scale CLEAN

A priori constraint: sky is composed of smooth blobs on a dark
background

Clark Clean MS Clean

Decompose sky into summation of blobs of various sizes e.g.
truncated parabolas of width 0, 3, 10, 30 pixels.

Perform one CLEAN algorithm for each scale size in parallel,
and choose blob that gives the greatest reduction in peak
residual

Excellent at identifying large-scale coherent structure
Clark Residuals MS Residuals

Residuals are quite noise-like

Multi-scale CLEAN Maximum Entropy Method

A priori constraint: sky is smooth and positive

Algorithm maximize a measure of smoothness (entropy) while
solving the convolution equation

H)==2 1 todl/m;)

where my is a “default” image which is the image obtained
with no data. Usually a flat default image is used.

Convergence
onvarious

scale sizes

Non-linear optimization problem: AIPS, AIPS++ use Cornwell-
Evans (1983) algorithm

Clean gain=0.5

Excellent for large diffuse emission

Default image is very powerful for incorporating prior images

Extensible to multiple simultaneous convolution equations
See Mosaicing lecture
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Maximum Entropy Method: Gaussian

Maximum Entropy Method: Disk

Maximum Entropy Method details

Fast and efficient for million or more pixels

Excellent on smooth extended emission with limited dynamic
range

Point sources cause problems
Should be removed using CLEAN before applying MEM
Lots written about philosophy and meaning of MEM

Algebraic deconvolution

Pixellate convolution equations and represent via linear
algebra Ax=p where the matrix A represents the point
spread function, x is the unknown image as a vector, and p
is the dirty image as a vector.

The problem is then to solve this linear equation using various
constraints

e.g. support constraints: we know that the emission is non-zero
for only some areas

Solve equation using e.g. Singular Value Decomposition

usually inadequate to get reasonable result but useful as
indication of conditioning of problem

Singular Value Decomposition

Non-Negative Least Squares

Impose non-negativity using any of a variety of solvers
Solve Ax=Db subjectto x30

Works well for high dynamic range images of moderately
resolved sources (Briggs' thesis, 1995)
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Non-Negative Least Squares: Gaussian

Non-Negative Least Squares: Disk
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Non-Negative Least Squares: Source
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Non-Negative Least Squares: Party trick
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Example

VLBA simulated observations of M87-like jet source

Will show
UV coverage
Visibility function
Point Spread Function
Dirty image
Clean images
Maximum Entropy images

Original and smoothed model
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Fourier plane sampling

Point Spread Function
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Original model and Dirty image
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Classic CLEAN: 5000 and 20000 comps
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Window CLEAN: 5000 and 20000 comps

MEM: failure of super-resolution
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MEM: boxed, with point source removed

Original model and best image

Best Clean and Best MEM

Example

VLA multi-snapshot observation of Hydra A-like source

Will show
UV coverage
Visibility function
Point Spread Function
Dirty image
Clean images
Maximum Entropy images

Model, PSF, Dirty image,
CLEAN, MEM, Multi-scale CLEAN

Summary

Incomplete Fourier plane coverage leads to diffraction

patterns in images

Deconvolution algorithms can correct for these patterns

A number of complementary algorithms exist for image

deconvolution
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