

Now cons	ider the tropospher	e as the first element of a
- G	$= e^{-\tau}$	
$-T_{\rm B}^{\rm stm}$ - "effe atmosp	$= T_{atm} \times (1 - e^{-t}),$ atmosphere ctive'' system noise ter ohere (i.e., relative to th $T_{sys}^{eff} = e^{-t} \times [1 + e^{-t}]$	where T_{am} = physical temperature of the atmosphere, ~ 300 K receiver mperature scaled to the top of the e unattenuated celestial signal) is: $T_{atm} \times (1-e^{-\tau}) + T_{mc}$]*

Telescope	altitude	diam.	No.	Α	v_{max}
	(feet)	(111)	dishes	(m ²)	(GHz)
BIMA ¹	3,500	6	10	280	250
OVRO ¹	4,000	10	6	470	250
CARMA ¹	7,300	3.5/6/10	23	800	250
NMA	2,000	10	6	470	250
IRAM PdB	8,000	15	6	1060	250
JCMT-CSO ²	14,000	10/15	2	260	650
SMA ³	14,000	6	8	230	850
ALMA4	16,400	12	64	7200	850
¹ BIMA and OVI ² First instrument ³ Currently has 5	RO will be con to obtain subr antennas, first	nbined and mov nm fringes; will fringes obtained	ed to a high l probably b d in Septem	er site to e used wi ber 1999 by 2010	become CA th the SMA at 230 GHz

