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Noise and Interferometry 
Chris Carilli (NRAO)

VLA  5e9 Hz VLTI  5e14 Hz
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Radio vs. Optical Interferometry

Radio: heterodyne + correlator

Amplifier

Optical: mirrors + direct detector (CCD)

Correlator

Delay

Baseband

Mixer
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Stability = 1e8
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Photon statistics: Bose-Einstein statistics for gas without number  
conservation ( indistiguishable  particles or wave function symmetric under  
particle exchange, spin 0; Reif Chap 9)

Thermal equilibrium => Planck distribution function

n_s = relative number of particles  in state s  = 

number of photons in standing mode in box at temperature T  = 

number of photons/s/Hz/ster/pol in beam in free space  (Richards 1994)

Photon noise: fluctuations in # of photons arriving each second in free space beam
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Electron statistics: Fermi-Dirac (indistiguishable particles, but number of 
particles in each state = 0 or 1, or  antisymmetric wave function under particle 
exchange, spin ½)
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RJ

Wien

Photon Noise II
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Photon noise III: Black bodies, spatial modes, and temperatures (Richards 94)
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Disclaimer on Wave noise

Richards 1994: ‘The first term in equation 11 can be obtained 
more directly. For Poisson statistics the mean square fluctuatio n 
in the number of photons arriving in 1s is just equal to the 
number of photons arriving. This term has been verified 
experimentally in many experiments. The second term, by 
contrast, has not been measured unambiguously.’

Zmuidzinas 2000: ‘Richards has recently discussed the second 
term of Eq. 4.1, raising questions about the theoretical and 
experimental justification for this term. However, as discussed in 
section III, the second term is needed in order to recover the 
Dickey radiometer equation for single mode detectors in the high
background limit; we therefore disagree that there is no empirical 
justification for this term.’
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Origin of wave noise I: Young’s 2 slit experiment
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Origin of wave noise II: ‘Bunching of Bosons’ in phase space 
(time and frequency) allows for interference (ie. coherence).

Bosons can, and will, occupy the exact same phase space if allowed, 
such that interference (destructive or constructive)  will occur. 
Restricting phase space (ie. narrowing the bandwidth and sampling 
time)  leads to interference within the beam. This naturally leads to 
fluctuations that are proportional to intensity  (= wave noise).
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“Think then, of a stream of wave packets each about c/∆ν long, 
in a random sequence. There is a certain probability that two 
such trains accidentally overlap. When this occurs they 
interfere and one may find four photons, or none, or something 
in between as a result. It is proper to speak of interference in
this situation because the conditions of the experiment are just
such as will ensure that these photons are in the same quantum 
state. To such interference one may ascribe the ‘abnormal’ 
density fluctuations in any assemblage of bosons . 

Were we to carry out a similar experiment with a beam of 
electrons we should find a suppression of the normal 
fluctuations instead of an enhancement. The accidental 
overlapping wave trains are precisely the configurations 
excluded by the Pauli principle.”                    Purcell 1959

Origin of wave noise III
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Photon arrival time: normalized probability of detecting a second 
photoelectron after interval t in a plane wave of linearly polarized light with
Gaussian spectral profile of width ∆ν (Mandel 1963). Exactly the same factor 
2 as in Young’s slits!

Maxwell-Boltzmann

Fermi-Dirac

Origin of wave noise IV

Photons ( Bose-Einstein wo. # conservation)

ν∆≈1/timescaleRelevant
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‘If we were to split a beam of electrons by a
nonpolarizing mirror, allowing the beams to fall on 
separate electron multipliers, the outputs of the latter 
would show a negative cross-correlation. A split 
beam of classical particles would, of course, show 
zero cross correlation. As usual in fluctuation 
phenomena, the behavior of fermions and bosons 
deviate in opposite directions from that of classical 
particles. The Brown-Twiss effect is thus, from a 
particle point of view, a characteristic quantum 
effect.’’                     Purcell 1959

Origin of wave noise V
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Intensity Interferometry: rectifying signal with square-law detector (‘photon 
counter’) destroys phase information. Cross correlation of inten sities still results in a finite 
correlation, proportional to the square of the E-field correlation coefficient as measured by 
a ‘normal’ interferometer. Exact same phenomenon as increased co rrelation for t < 1/ ∆ν
in lag -space above, ie. correlation of the wave noise itself  = ‘Brown and Twiss effect’
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γ = correlation coefficient

Disadvantage: No visibility phase information

lower SNR

Works best for high n_s: hot stars in near IR

Advantage: timescale = 1/∆ν   (not 1/ν)

=> insensitive to poor optics, ‘seeing’
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Signal-to-Noise I: allow for A, t, ∆ν
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Signal to Noise II

For strong point source
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Photon occupation number I: bright radio source
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Photon occupation number II: optical source
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Photon occupation number III: faint source
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RJ
Wien

“Even the feeble microwave background ensures that the occupation number at 
most radio frequencies is already high. In other words, even though the particular 
contribution to the signal that we seek is very very weak, it is already in a 
classical sea of noise and if there are benefits to be derived from retaining the 
associated aspects, we would be foolish to pass them up.” Radhakrishnan1998
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Quantum noise I: Commutation relations
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Quantum noise II: Coherent Amplifiers
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Phase coherent amplifier automatically puts signal into RJ = 
‘classical’ regime
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Quantum noise III: 2 slit paradox

Which slit does the photon enter?  With a phase conserving amplifier it seems one 
could both detect the photon and ‘build-up’ the interference pattern (which we 
know can’t be correct). But quantum noise dictates that the amplifier introduces 1 
photon/mode noise, such that:  

I_tot = 1 +/- 1

and we still cannot tell which slit the photon came through.
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Quantum noise IV: Einstein Coefficients 
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Quantum noise IVb: maser acts as quantum limited amplifier as 
dictated by the Einstein coefficients (Zmuindzinas 2000)
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Quantum noise V: Radio vs. Optical Interferometry
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without lowering SNR!

Quantum noise Vb
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Quantum limit VI: Heterodyne vs. direct detection interferometry
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Quantum limit VII: On the border
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