A New Sample of Massive Young Stellar Object Outflow Candidates: Extended Green Objects from the GLIMPSE Survey

Claudia Cyganowski (CfA)

Collaborators:

Crystal Brogan (NRAO) Ed Churchwell (Wisconsin) Todd Hunter (NRAO) Barb Whitney (Wisconsin) Qizhou Zhang (CfA)

Radio Astronomy & the ISM, May 18, 2011

How do massive stars form?

Observational difficulties:

- Distant (> 1 kpc)
- Deeply embedded (obscured shortward of MIR)
- Clustered

How do massive stars form?

The Evolution of IR-selected MYSO samples...

MSX

IRAS

RGB: 100, 25, 12 μm Resolution $\sim 0.5'-2'$

RGB: 21.4, 12.1, 8.3 μm RGB: 8.0, 4.5, 3.6 μm Resolution ~ 18" Resolution $\sim 2^{"}$

A New MYSO Outflow Sample: GLIMPSE Extended Green Objects (EGOS)

Are EGOs Massive YSOs with Outflows?

Observational Tests:

- EVLA survey for 6.7 GHz CH₃OH masers (associated exclusively with *massive* YSOs; Minier et al. 2003)
- VLA survey for 44 GHz CH₃OH masers (associated with molecular outflows; Kurtz et al. 2004)
- JCMT survey for SiO, HCO⁺, H¹³CO⁺, thermal CH₃OH emission

- Sample of ~28 EGOs, selected to:
 - Cover range of MIR properties (8/24um counterparts, morphology, angular extent of 4.5um emission)
 - Be visible from northern hemisphere

EGO Survey Results: Spatial Distribution of CH₃OH Masers

GLIMPSE Images: Red: 8um Green: 4.5um Blue: 3.6um

Yellow contours: MIPS 24 um

+ 44 GHz Class I CH_3OH masers

 \Diamond 6.7 GHz Class II CH₃OH masers

Cyganowski et al. (2009)

EGO Survey Results: Summary

- 6.7 GHz CH_3OH maser detection rate >64%
 - Nearly 2x detection rate of other MYSO samples
 - Centrally concentrated, coincident with 24µm emission
- 44 GHz CH_3OH maser detection rate ~ 89%
 - Spatially distributed, coincident with 4.5µm emission
 - Velocities near systemic
- HCO⁺ (3-2) line profiles indicative of outflows (broad line wings)
- SiO (5-4) detection rate $90\% \rightarrow$ recent shocks, *active* outflows
- 95% nondetection rate for bright 44 GHz continuum emission → most EGOs are not UC HII regions

Bottom line: Surveyed EGOs are young MYSOs with active outflows, and hence presumably ongoing accretion

How evolved are EGOs?

Search for cm continuum emission:

- Deep VLA surveys:
 - 3.6 cm (σ~30 µJy/beam)
 - 1.3 cm (σ~0.25 mJy/beam)
 - Resolution ~1"

- Sample of 14 EGOs:
 - Selected from maser survey sample
 - Associated with 6.7 GHz CH₃OH masers, 44 GHz CH₃OH masers, or both

Cm Survey Results: Detections

Cyganowski et al., in prep.

Cm Continuum Survey Results: Summary

- Nondetection rate 57% (8/14)
 - Undetected at both 3.6 and 1.3 cm:
 - N_{lvc} < few x 10⁴⁴ s⁻¹ (optically thin)
 - Size < ~ 100 AU (optically thick)
- Most cm-λ EGO counterparts are:
 - Weak (< 1 mJy)
 - Detected only at 3.6 cm
 - Intermediate spectral indices
- One detected only at 1.3 cm, probable HC HII region
- Only 2 EGOs associated with UC/C HII regions:
 - Both show cm-λ multiplicity

$$S_{\nu} \sim \nu^{\alpha}$$

 $\alpha = -0.1$ optically thin
 $\alpha = 2$ optically thick

Cm Survey Results: Nature of cm emission

Cyganowski et al., in prep.

Feedback Mechanisms and (Proto)cluster Formation: Case Study G11.92-0.61

Image: Red: 8um, Green: 4.5um, Blue: 3.6um (GLIMPSE) Yellow contours: MIPS 24 um Magenta Crosses: 44 GHz Class I CH₃OH masers Black Diamonds: 6.7 GHz Class II CH₃OH masers

Cyganowski et al. (2009)

Molecular Bipolar Outflows: G11.92-0.61

CARMA

CARMA

(a) ¹² CO (2-1)	(b) HCO ⁺ (1-0)	(c) SiO (2-1)
Outflow properties M_{red} : 0.2 M_{sun} M_{blue} : 0.6 M_{sun} M_{total} : 0.8 M_{sun} Length: 0.6 pc t_{dyn} : ~ 5-6 x 10 ³ yrs	Outflow properties M _{red} : 2.6 M _{sun} M _{blue} : 5.2 M _{sun} M _{total} : 7.8 M _{sun} Length: 0.6 pc	V _{LSR} ~ 35 km/s Red: v~ 45-54 km/s Blue: v~ 8-25 km/s ~V _{LSR} ± 10 km/s
Mass outflow rate: ∼ 1.3 x 10 ⁻⁴ M _{sun} /yr	Mass outflow rate: ~ 1.4 x 10 ⁻³ M _{sun} /yr	15 Cvganowski et al., 2011

Compact Cores: G11.92-0.61

Compact Cores and Cm Continuum: G11.92-0.61

GLIMPSE Images: Red: 8um Green: 4.5um Blue: 3.6um

Yellow contours: MIPS 24 um

Blue contours: 1.3 cm continuum

+ 44 GHz Class I CH_3OH masers

 \Diamond 6.7 GHz Class II CH₃OH masers

 \blacktriangle H₂O maser

Cyganowski et al., in prep.

Summary and Conclusions:

- Catalog of >300 GLIMPSEI EGOs selects for massive young stellar objects with outflows
- High resolution surveys of indirect tracers (masers) confirm association of EGOs with *active* outflows and *massive* YSOs
- Case studies (high resolution observations of *direct* tracers) show:
 - outflow origin for extended 4.5 um emission
 - driving sources are hot cores and NOT UC HIIs
 - diversity in clustering properties and evolutionary state

EGOs are a promising new sample for studying (proto)stellar feedback during the crucial--and poorly understood--early active accretion phase