What Polarization Tells Us About the Accretion Disk in SgrA*

 or

 or
 "What I Want to Do with ALMA but They Wouldn't Let Me"

Jim Moran

Miller-Fest, Durango, CO May 18, 2011

The Galactic Center on Three Size scales

- 1. Circumnuclear (molecular) Disk (CND) and Mini-spiral (ionized streamers)
$120 \operatorname{arcs} / 5 \mathrm{pc}$
Zhao, Blundell, Downes, Schuster, Marrone
- 2. Black hole accretion envelope $\left(100 \mathrm{R}_{\mathrm{s}}\right)$

1 mas / 0.03 milli pc
Marrone, Munoz, Rao

- 3. SgrA* radio source

37 microarcseconds / 1 micro pc
Doeleman, et al., Fish et al., 2011

Nine Field Mosaic Image of Circumnuclear Disk in Galactic Center

$$
\begin{aligned}
& \mathrm{CN} \\
& \mathrm{H} 2 \mathrm{CO} \\
& \quad \mathrm{SiO} \\
& \\
& \text { SMA Data } \\
& \text { Sergio Martin Ruiz } \\
& 3 \text { arcmin field } \\
& 3 \text { arcs resolution } \\
& 1.3 \mathrm{~mm} \\
& \text { wavelength }
\end{aligned}
$$

H30 α RRL Zhao, et al, ApJ 2010

A HUNGRY BLACK HOLE

Some Scales in the Galactic Center

$r_{s}=1.3 \times 10^{12} \mathrm{~cm}$ (for 4.3×10^{6} solar masses) $=10 \mu$ as at 8.3 kpc

$1.3 \mathrm{~mm} \lambda$ Observations of SgrA*

VLBI program led by large consortium led by Shep Doeleman, MIT/Haystack

VLBI Observations 2009

See Fish, et al., Ap.J. (Lett), 727, L36, Feb 1, 2011

New (sub)mm VLBI Sites for EHT

Phase 1:7 Telescopes (+ IRAM, PdB, LMT, Chile)
Phase 2: 10 Telescopes (+ Spole, SEST, Haystack)
Phase 3: 13 Telescopes (+ NZ, Africa)

Seeing Through the Scattering

$\theta_{\text {OBS }}$ deviates from scattering for $\lambda<1.35 \mathrm{~cm}$
$\theta_{\text {INT }} \ll \theta_{\text {SCAT }}$ for $\lambda>1.3 \mathrm{~mm}$
$\theta_{\mathrm{INT}} \propto \lambda^{1.4}$

2005 SMA Measurements of Faraday Rotation in Sgr A*

Accretion Rate and Faraday Rotation

$$
\begin{aligned}
& \chi(\lambda)=\chi_{0}+\lambda^{2} R M \\
& R M=8.1 \times 10^{5} \int n_{e}{ }_{e}^{\prime} \cdot d d^{\prime}
\end{aligned}
$$

- $\mathrm{RM}=-5.1 \times 10^{5} \mathrm{rad} / \mathrm{m}^{2}$

Assumptions: equipartition density power law inner radius cutoff of Faraday screen

- Accretion Rate $=10^{-9}-10^{-7} \mathrm{M}_{\text {Sun }} / \mathrm{yr}$

Polarization Track for 3/31/07 Observation of SgrA*

Circular Polarization of Sgr A*

Diego Munoz, Harvard Research Exam Project, 2009

Days 96 and 97 (2010)

The Minimum Apparent Size

EHT Phases:

Phase I: 7 station $8 \mathrm{~Gb} / \mathrm{s}$ array
Phasing ALMA and CARMA 2010 -- 2014
Phase II: 10 station 32Gb/s dual-pol array

Activate SEST, equip S.Pole move to 0.8 mm observations 2015-- 2018
Phase III: 12 station array up to $64 \mathrm{~Gb} / \mathrm{s}$
New dishes for optimal baseline coverage
2019 -- 2024

Circular Polarization: Null results for Quasars

Table 2. Circular Polarization for Quasars (showing null results) on March 31st, 2007

	LSB			USB	
Source	$I[\mathrm{Jy}]$	V / I		$I[\mathrm{Jy}]$	V / I
3C273	15.40 ± 0.03	$(1.2 \pm 1.2) \times 10^{-3}$		15.05 ± 0.02	$(1.1 \pm 1.3) \times 10^{-3}$
3C279	12.92 ± 0.02	$(1.5 \pm 1.4) \times 10^{-3}$		12.88 ± 0.02	$(1.3 \pm 1.4) \times 10^{-3}$
3C286	0.49 ± 0.01	$(7.9 \pm 15.2) \times 10^{-3}$		0.46 ± 0.01	$(14.8 \pm 17.9) \times 10^{-3}$
$1337-129$	6.92 ± 0.03	$(2.1 \pm 3.0) \times 10^{-3}$		6.89 ± 0.03	$(2.5 \pm 3.4) \times 10^{-3}$
$1924-292^{\mathrm{a}}$	7.00 ± 0.01	$(-0.2 \pm 1.1) \times 10^{-3}$		6.95 ± 0.01	$(-0.1 \pm 1.2) \times 10^{-3}$

${ }^{\text {a }}$ Shown here for comparison, quasar 1924-292 was observed on the night of May 30th, 2008. This measurement was part of our extensive testing program. 1924-292 has nearly the same declination as $\mathrm{Sgr} \mathrm{A}^{*}$ so their tracks of parallactic angle are nearly identical.

- Very faint source still detectible at most astronomical observing bands
- SED measurements span 10 decades in frequency
- $L_{\text {SgrA }} \sim 300 L_{\text {Sun }} \sim 10^{-9}$ Eddington limit

Genzel et al. (2004)

$\Delta \alpha \psi 96$

Determining the Size of SgrA*

Doeleman et al 2008

Submillimeter Valley, Mauna Kea, HI

Fringe Amplitude vs Fringe Rate

Building an Event Horizon Telescope Required Technical Developments

Adding Telescopes: uv coverage, flare coverage, closure quantities for real-time modeling.
Low noise, dual pol receivers for all sites.
Central wideband correlation facility.
VLBI backends/recorders that support > 4Gb/s.
Phased Array processors (ALMA, PdeBure,
CARMA, Hawaii)
Low noise freq. references: H-Masers/CSO's

RA offset (arcsec; J2000)

Fits to Visibility Data

Gammie et al

Resolving Rsch-scale structures

Spinning ($\mathrm{a}=1$)

Non-spinning ($\mathrm{a}=0$)

Falcke Melia Agol

SgrA* has the largest apparent Schwarzschild radius of any BH candidate.
Rsch $=10 \mu$ as
Shadow $=5.2$ Rsch (non-spinning)
= 4.5 Rsch (maximally spinning)

Hot Spot Models ($\mathrm{P}=27 \mathrm{~min}$)

$\operatorname{Spin}=0$, orbit $=\mathrm{ISCO}$
Spin $=0.9$, orbit $=2.5 \times$ ISCO

