What Polarization Tells Us About the Accretion Disk in SgrA* or "What I Want to Do with ALMA but They Wouldn't Let Me"

Jim Moran

Miller-Fest, Durango, CO May 18, 2011

The Galactic Center on Three Size scales

- 1. Circumnuclear (molecular) Disk (CND) and Mini-spiral (ionized streamers)
 120 arcs / 5 pc Zhao, Blundell, Downes, Schuster, Marrone
- 2. Black hole accretion envelope (100 R_s) 1 mas / 0.03 milli pc Marrone, Munoz, Rao
- 3. SgrA* radio source
 37 microarcseconds / 1 micro pc
 Doeleman, et al., Fish et al., 2011

Nine Field Mosaic Image of Circumnuclear Disk in Galactic Center

CN H2CO SiO

SMA Data Sergio Martin Ruiz

3 arcmin field3 arcs resolution1.3 mmwavelength

A HUNGRY BLACK HOLE

Some Scales in the Galactic Center

 $r_s = 1.3 \times 10^{12} \text{cm} \text{ (for } 4.3 \times 10^6 \text{ solar masses)} = 10 \mu \text{as at } 8.3 \text{ kpc}$

1.3mmλ Observations of SgrA*

VLBI program led by large consortium led by Shep Doeleman, MIT/Haystack

VLBI Observations 2009

See Fish, et al., Ap.J. (Lett), 727, L36, Feb 1, 2011

New (sub)mm VLBI Sites for EHT

Phase 1: 7 Telescopes (+ IRAM, PdB, LMT, Chile) Phase 2: 10 Telescopes (+ Spole, SEST, Haystack) Phase 3: 13 Telescopes (+ NZ, Africa)

Seeing Through the Scattering 100 θ_{OBS} deviates from scattering for $\lambda < 1.35$ cm 10 FWHM Size (mas) $\theta_{\rm INT} < < \theta_{\rm SCAT}$ for $\lambda > 1.3$ mm $\theta_{INT}\,\alpha\,\lambda^{1.4}$ Scattering 0.1 Dominated 0.01 10 0.1

Wavelength (cm)

2005 SMA Measurements of Faraday Rotation in Sgr A*

Accretion Rate and Faraday Rotation

$$\chi(\lambda) = \chi_0 + \lambda^2 RM$$
$$RM = 8.1 \times 10^5 \int n_e B \cdot dl$$

• $RM = -5.1 \times 10^5 \text{ rad/m}^2$

Assumptions: equipartition density power law inner radius cutoff of Faraday screen

• Accretion Rate = $10^{-9} - 10^{-7} M_{Sun}/yr$

Polarization of Sgr A* at 230 GHz (1.3 mm) (SMA)

Polarization Track for 3/31/07 Observation of SgrA*

Circular Polarization of Sgr A*

Diego Munoz, Harvard Research Exam Project, 2009

Days 96 and 97 (2010)

The Minimum Apparent Size

EHT Phases:

<u>Phase I</u>: 7 station 8Gb/s array Phasing ALMA and CARMA 2010 -- 2014 <u>Phase II</u>: 10 station 32Gb/s dual-pol array Activate SEST, equip S.Pole

move to 0.8mm observations

2015 -- 2018

Phase III: 12 station array up to 64Gb/s

New dishes for optimal baseline coverage 2019 -- 2024

Circular Polarization: Null results for Quasars

	LSB		USB	
Source	I ~[Jy]	V/I	I [Jy]	V/I
3C273 3C279 3C286	15.40 ± 0.03 12.92 ± 0.02 0.49 ± 0.01	$egin{aligned} (1.2\pm1.2) imes10^{-3}\ (1.5\pm1.4) imes10^{-3}\ (7.9\pm15.2) imes10^{-3} \end{aligned}$	$egin{array}{c} 15.05 \pm 0.02 \ 12.88 \pm 0.02 \ 0.46 \pm 0.01 \end{array}$	$egin{aligned} (1.1\pm1.3) imes10^{-3}\ (1.3\pm1.4) imes10^{-3}\ (14.8\pm17.9) imes10^{-3} \end{aligned}$
1337-129 1924-292 ^a	6.92 ± 0.03 7.00 ± 0.01	$(1.9 \pm 13.2) \times 10^{-3}$ $(2.1 \pm 3.0) \times 10^{-3}$ $(-0.2 \pm 1.1) \times 10^{-3}$	6.40 ± 0.01 6.89 ± 0.03 6.95 ± 0.01	$(14.8 \pm 17.9) \times 10^{-3}$ $(2.5 \pm 3.4) \times 10^{-3}$ $(-0.1 \pm 1.2) \times 10^{-3}$

Table 2. Circular Polarization for Quasars (showing null results) on March 31st, 2007

^aShown here for comparison, quasar 1924-292 was observed on the night of May 30th, 2008. This measurement was part of our extensive testing program. 1924-292 has nearly the same declination as Sgr A* so their tracks of parallactic angle are nearly identical.

- Very faint source still detectible at most astronomical observing bands
 - SED measurements span 10 decades in frequency
- $L_{SgrA*} \sim 300 L_{Sun} \sim 10^{-9} Eddington limit$

Genzel et al. (2004)

Δαψ 96

Determining the Size of SgrA*

$$\theta_{OBS} = 43 \mu as (+14, -8)$$

 $\theta_{INT} = 37 \mu as (+16, -10)$

$$\theta_{OBS} = \sqrt{\theta_{INT}^2 + \theta_{SCAT}^2}$$

Doeleman et al 2008

Submillimeter Valley, Mauna Kea, HI

Fringe Amplitude vs Fringe Rate

Building an Event Horizon Telescope Required Technical Developments

Adding Telescopes: uv coverage, flare coverage, closure quantities for real-time modeling.
Low noise, dual pol receivers for all sites.
Central wideband correlation facility.
VLBI backends/recorders that support > 4Gb/s.
Phased Array processors (ALMA, PdeBure, CARMA, Hawaii)
Low noise freq. references: H-Masers/CSO's

Fits to Visibility Data

Gammie et al

Resolving Rsch-scale structures

 SgrA* has the largest apparent Schwarzschild radius of any BH candidate.

 $Rsch = 10\mu as$

Shadow = 5.2 Rsch (non-spinning)

= 4.5 Rsch (maximally spinning)

Hot Spot Models (P = 27 min)

230 GHz, ISM scattered

Spin = 0, orbit = ISCO

Models: Broderick & Loeb

Spin = 0.9, orbit = $2.5 \times ISCO$