Neutron Stars, Radio Transients, and Precision Astrometry

Shami Chatterjee
Cornell University

19 May 2011
• Science makes progress through the interplay between theory and observation.
• Crucial role of precision measurements.
Science makes progress through the interplay between theory and observation.

Crucial role of precision measurements.

In this talk:

- Precision astrometry of neutron stars:
 - Supernova core collapse.
 - Gamma ray emission energetics.

- Radio transients:
 - VAST, an ASKAP Survey Science program.
B1508+55 is a very “ordinary” pulsar:

- Rotation period is 0.74 seconds.
- Inferred magnetic field is 2×10^{12} Gauss.
- Characteristic age is 2.3 million years.
- Located well outside Galactic plane ($b = 52.3^\circ$).
B1508+55 is a very “ordinary” pulsar:

- Rotation period is 0.74 seconds.
- Inferred magnetic field is 2×10^{12} Gauss.
- Characteristic age is 2.3 million years.
- Located well outside Galactic plane ($b = 52.3^\circ$).

Observe 8 times over 2 years with the VLBA...
$\mu_a = -73.61 \pm 0.04 \text{ mas yr}^{-1}$

$\mu_d = -62.62 \pm 0.09 \text{ mas yr}^{-1}$

$\pi = 0.42 \pm 0.04 \text{ mas}$

(with Vlemmings, Brisken, Lazio, Cordes, Goss, Thorsett, Fomalont, Lyne, Kramer)
Astrometric Results for B1508+55

\[\mu_a = -73.61 \pm 0.04 \, \text{mas yr}^{-1} \]
\[\mu_d = -62.62 \pm 0.09 \, \text{mas yr}^{-1} \]
\[\pi = 0.42 \pm 0.04 \, \text{mas} \]

Distance = \(2.37^{+0.23}_{-0.20} \) kpc
\[V_\perp = 1083^{+103}_{-90} \, \text{km s}^{-1} \]

(Chatterjee et al. 2005)
Astrometric Results for B1508+55

\[\mu_a = -73.61 \pm 0.04 \text{ mas yr}^{-1} \]
\[\mu_d = -62.62 \pm 0.09 \text{ mas yr}^{-1} \]
\[\pi = 0.42 \pm 0.04 \text{ mas} \]

Distance = \(2.37^{+0.23}_{-0.20}\) kpc
\[V_\perp = 1083^{+103}_{-90} \text{ km s}^{-1} \]

(Chatterjee et al. 2005)

The highest measured model-independent velocity yet!
The Birth Site of B1508+55

- Current Galactic latitude = 52.3°.
- Trace back orbit in Galaxy: born in Galactic plane.
- Birth in or near Cygnus OB associations.

Orbit of B1508+55 overlaid on Axel Mellinger’s image of the Galaxy.
• B1508+55: implied birth velocity \(\approx 1100 \text{ km s}^{-1} \).
• Binary disruption is unlikely to impart such a high velocity; a kick is required.
• B1508+55: implied birth velocity $\approx 1100 \text{ km s}^{-1}$.
• Binary disruption is unlikely to impart such a high velocity; a kick is required.

• High kick velocity poses a challenge for core collapse simulations and proposed kick mechanisms.
B1508+55: Getting its Kicks

- B1508+55: implied birth velocity $\approx 1100 \, \text{km s}^{-1}$.
- Binary disruption is unlikely to impart such a high velocity; a kick is required.

- High kick velocity poses a challenge for core collapse simulations and proposed kick mechanisms.

\rightarrow We can also do this for other compact radio sources, of course...
• Camilo et al. (2006): Transient pulsed radio emission!
• Rapidly fading...

(from Camilo et al. 2006)
Camilo et al. (2006): Transient pulsed radio emission!
Rapidly fading...
But bright enough for VLBA obs at 5, 8.4 GHz over 106 days.
\(\mu_\alpha = -6.60 \pm 0.06 \text{ mas yr}^{-1}\)

\(\mu_\delta = -11.7 \pm 1.0 \text{ mas yr}^{-1}\)
\[\mu_\alpha = -6.60 \pm 0.06 \text{ mas yr}^{-1} \]
\[\mu_\delta = -11.7 \pm 1.0 \text{ mas yr}^{-1} \]

\[\Rightarrow \]

For \(D = 3.5 \pm 0.5 \text{ kpc} \),
\[V_\perp \sim 220 \text{ km s}^{-1} \]
\[[180 - 270 \text{ km s}^{-1}] \]

(Helfand, Chatterjee, et al. 2007)
$\mu_\alpha = -6.60 \pm 0.06 \text{ mas yr}^{-1}$

$\mu_\delta = -11.7 \pm 1.0 \text{ mas yr}^{-1}$

\Rightarrow

For $D = 3.5 \pm 0.5 \text{ kpc}$,

$V_\perp \sim 220 \text{ km s}^{-1}$

[180 – 270 km s$^{-1}$]

(Helfand, Chatterjee, et al. 2007)

\Rightarrow For this one magnetar V_\perp, no exotic kicks are required.
The *Fermi* gamma-ray space telescope

- LAT: Imaging high-energy gamma-ray telescope.
- 20 MeV—300 GeV; FoV covers 20% of the sky.
- Continuous scanning: whole sky imaged every 3 hours.
Note: Crab, Vela, Geminga, J1836+5925, and “Unidentified”...
A neutron star discovery machine!

New Millisecond Radio Pulsars Found in Fermi LAT Unidentified Sources

Led by Fernando Camilo (Columbia Univ.) using Australia’s CSIRO Parkes Observatory
Led by Mallory Roberts (Eureka Scientific/GMU/NRL) using the NRAO’s Green Bank Telescope
Led by Scott Ransom (NRAO) using the Green Bank Telescope
Led by Ismael Cognard (CNRS) using France’s Nançay Radio Telescope
Led by Mike Keith (ATNF) using Parkes Observatory

(Scott Ransom, Paul Ray, AAS meeting 215, DC 2010)
First *Fermi* PSR catalog: 46 gamma-ray pulsars!

→ 16 new pulsars from γ-ray blind searches.

→ Many more from radio follow-up of unidentified point sources.

→ More discoveries on a regular basis.

→ Young + recycled.
First *Fermi* PSR catalog: 46 gamma-ray pulsars!

→ 16 new pulsars from γ-ray blind searches.

→ Many more from radio follow-up of unidentified point sources.

→ More discoveries on a regular basis.

→ Young + recycled.

- High B_{LC} \Leftrightarrow γ-ray emission?
- Interesting physics to be sorted out.
Gamma ray luminosity vs Spindown \dot{E}
Gamma ray luminosity vs Spindown \dot{E}

Suggestive? But distance uncertainty limits usefulness...
Case study: PSR J1614–2230

- Mass from Shapiro delay = $1.97(4) \, M_\odot$ (Demorest et al. 2010).

⇒ Rules out most exotic quark matter equations of state.
Case study: PSR J1614–2230

- Mass from Shapiro delay = 1.97(4) M_\odot (Demorest et al. 2010). → Highest reliably measured NS mass.

- At D=1.2 kpc, L_γ is also $\gtrsim 100\%$ of \dot{E}.

... Happenstance? Coincidence?
Case study: PSR J1614–2230

- Mass from Shapiro delay = 1.97(4) M_\odot (Demorest et al. 2010). → Highest reliably measured NS mass.

- At $D=1.2$ kpc, L_γ is also $\gtrsim 100\%$ of \dot{E}.

... Happenstance? Coincidence?

... Or might $\dot{E} = I\dot{\omega}$ be larger than expected?
Case study: PSR J1614–2230

- Mass from Shapiro delay = 1.97(4) M_\odot (Demorest et al. 2010).
 → Highest reliably measured NS mass.

- At D=1.2 kpc, L_γ is also $\gtrsim 100\%$ of \dot{E}.

 ... Happenstance? Coincidence?

 ... Or might $\dot{E} = I \omega \dot{\omega}$ be larger than expected?

 ⇒ A precise distance may constrain the NS moment of inertia.
Astrometry is a force multiplier: precise astrometry improves the science return from new discoveries.
Astrometry is a force multiplier: precise astrometry improves the science return from new discoveries.

- **Astrophysics**: NS kicks constrain models of supernova core collapse – hydrodynamic, magnetic field-driven, or hybrids.

- **Astrophysics**: Compare apparent L$_\gamma$ with absolute $\dot{E} = I \omega \dot{\omega}$.

 → Emission geometry, luminosity evolution.
Astrometry is a force multiplier: precise astrometry improves the science return from new discoveries.

- **Origins**: Use μ and τ to trace path back to birth sites and associations with massive star clusters, SNRs.
- **Relativistic winds**: Calibrate energetics of PWNe, probe interaction with ISM and bulk flows.
Astrometry is a force multiplier: precise astrometry improves the science return from new discoveries.

- **Gravitational physics**: Astrometric parameters for stable recycled pulsars independent of pulse timing.
 → Shklovskii effect corrections, break timing degeneracies.

- **Galactic electron density modeling**: improve DM-based distance estimates for entire population.
Astrometry is a force multiplier: precise astrometry improves the science return from new discoveries.

- **Astrophysics**: SN core collapse, L_γ vs. \dot{E}.
- **Origins**: Birth sites, associations.
- **Relativistic winds** and the ISM.
- **Gravitational physics**.
- **Galactic modeling**: N_e distribution.
Two parallel efforts in progress:

- Targeted astrometry on a subset of *Fermi*-detected radio pulsars: 18 targets, 12 being observed (epochs 1–3).
Two parallel efforts in progress:

- Targeted astrometry on a subset of *Fermi*-detected radio pulsars: 18 targets, 12 being observed (epochs 1–3).
- PSRπ: Astrometry on a wide selection of “bright enough” radio pulsars. Large survey: \(\sim 200\) targets, 1 mJy, 5+ kpc.
Two parallel efforts in progress:

- Targeted astrometry on a subset of Fermi-detected radio pulsars: 18 targets, 12 being observed (epochs 1–3).
- PSR_π: Astrometry on a wide selection of “bright enough” radio pulsars. Large survey: \(\sim 200 \) targets, 1 mJy, 5+ kpc.

VLBA astrometry collaboration:
Goal: A distance measuring service

Is YOUR Neutron Star:

★ A radio emitter?
★ Brighter than ~1 mJy?
★ Closer than ~8 kpc?
★ North of −25 in Dec?

Measure a parallax* with the VLBA!

*Certain conditions, exclusions, and limitations apply. Please talk to the presenter or consult your friendly local expert about why the VLBA may be right for YOU!
The dynamic radio sky is a discovery frontier.

Why? Trade-off between sky coverage and sensitivity.
(There are no all-sky monitors at \simGHz frequencies.)
The dynamic radio sky is a discovery frontier.
The dynamic radio sky is a discovery frontier.

VAST → “Slow” transients, no dispersion searching.

Ultimately, we want to go from discovery → science.

- Explosive events.
- Accretion-powered.
- Magnetic field driven.
- Propagation effects.
GCRT 1745–3009: Periodic 1 Jy bursts at 330 MHz. 77 min intervals, 10 min bursts... coherent, unexplained.

(Hyman et al. 2005, Nature, 434, 50)
The dynamic radio sky is a discovery frontier.

As we know,
There are known knowns.
There are things we know we know.
We also know
There are known unknowns.
That is to say
We know there are some things
We do not know.
But there are also unknown unknowns,
The ones we don’t know
We don’t know.

— US Sec Def. Donald Rumsfeld
DoD briefing, 12 Feb 2002
Log N—log S distribution of transient and variable sources from different surveys: different ν_{obs}, cadences, sky coverage, etc.

(Plot from Bell et al. 2011)
ASKAP: The Australian SKA Pathfinder

- Square Kilometer Array: the next generation radio telescope.
- CSIRO is building a “pathfinder” in Western Australia, at the Murchison Radio-astronomy Observatory site.
ASKAP: The Australian SKA Pathfinder

- Square Kilometer Array: the next generation radio telescope.
- CSIRO is building a “pathfinder” in Western Australia, at the Murchison Radio-astronomy Observatory site.
- Murchison shire: Area 16,000 sq miles, population 100.
ASKAP: The Australian SKA Pathfinder

- Square Kilometer Array: the next generation radio telescope.
- CSIRO is building a “pathfinder” in Western Australia, at the Murchison Radio-astronomy Observatory site.
- Murchison shire: Area 16,000 sq miles, population 100.
ASKAP: The Australian SKA Pathfinder

- Under construction; operations commence in 2013.
- 36 dishes, 12-m diameter, 2 km core, up to 6 km baselines.
- Operating at 0.9–1.8 GHz, with $\sim 20''$ beam.

(Oct 2010, with thanks to Ant Schinckel, CSIRO)
ASKAP: The Australian SKA Pathfinder

- Under construction; operations commence in 2013.
- 36 dishes, 12-m diameter, 2 km core, up to 6 km baselines.
- Operating at 0.9–1.8 GHz, with $\sim 20''$ beam.
- Optimized for survey speed: Focal plane arrays, 3-axis mount.
ASKAP: The Australian SKA Pathfinder

- Under construction; operations commence in 2013.
- 36 dishes, 12-m diameter, 2 km core, up to 6 km baselines.
- Operating at 0.9–1.8 GHz, with $\sim 20''$ beam.
- Optimized for survey speed: Focal plane arrays, 3-axis mount.

Wide field of view ($\gtrsim 30$ sq deg):
⇒ ASKAP is well-suited for surveys for radio transients.
VAST: An ASKAP Survey for Variables and Slow Transients

- **VAST** is one of 10 approved Survey Science Proposals. Currently starting Year 2 of Design Study.
VAST: An ASKAP Survey for Variables and Slow Transients

- **VAST** is one of 10 approved Survey Science Proposals. Currently starting Year 2 of Design Study.

- Diverse collaboration:
 - **76 members**, 36 institutions, 4 continents.
 - PIs Tara Murphy & Shami Chatterjee.
VAST: An ASKAP Survey for Variables and Slow Transients

- **VAST** is one of 10 approved Survey Science Proposals. Currently starting Year 2 of Design Study.

- Diverse collaboration: **76 members**, 36 institutions, 4 continents. PIs Tara Murphy & Shami Chatterjee.

- Survey components: **Deep, Wide, Galactic Plane**.

- Wide range of science goals, but the same technical challenges:
 - Detection of transients and variable sources.
 - Identification and classification.
 - Triggered follow-up observations.
VAST: An ASKAP Survey for Variables and Slow Transients

- **VAST** is one of 10 approved Survey Science Proposals. Currently starting Year 2 of Design Study.

- Diverse collaboration: 76 members, 36 institutions, 4 continents. PIs Tara Murphy & Shami Chatterjee.

- Wide range of science goals, but the same technical challenges:
 - **Detection** of transients and variable sources.
 - **Identification** and **classification**.
 - Triggered **follow-up** observations.

- **Open collaboration**: We welcome interested and active new members!
A whole generation of students, postdocs, and young radio astronomers owes you a debt of thanks!

Your unflagging enthusiasm has helped drag many a paper across the finish line.

We will look forward to many more marked up paper drafts.

Radio astronomy and transients: we live in interesting times.
Extras
Goal: A distance measuring service

Is **YOUR** Neutron Star:

⭐ A radio emitter?
⭐ Brighter than ~1 mJy?
⭐ Closer than ~8 kpc?
⭐ North of ~25 in Dec?

Measure a parallax with the VLBA!

Certain conditions, exclusions, and limitations apply. Please talk to the presenter or consult your friendly local expert about why the VLBA may be right for YOU!
VAST Survey Strategy

- Survey entire sky at regular intervals.
 → Go shallow but wide in search of ‘rare and bright’ sources.
 ⇒ Better sky coverage, poor coverage of different cadences.
VAST Survey Strategy

- Survey entire sky at regular intervals.
 → Go shallow but wide in search of ‘rare and bright’ sources.
 ⇒ Better sky coverage, poor coverage of different cadences.

- Survey targeted fields at log-nested hierarchy of time intervals.
 → Go deep in search of ‘common and faint’ sources.
 ⇒ Better sampling of different timescales, less sky coverage.
VAST Survey Strategy

- Survey entire sky at regular intervals.
 → Go shallow but wide in search of ‘rare and bright’ sources.
 ⇒ Better sky coverage, poor coverage of different cadences.

- Survey targeted fields at log-nested hierarchy of time intervals.
 → Go deep in search of ‘common and faint’ sources.
 ⇒ Better sampling of different timescales, less sky coverage.

- Piggyback on all other ASKAP survey observations.
 → “Free”, but no control on cadence or sky coverage.
VAST Survey Strategy

• Survey entire sky at regular intervals.
 → Go shallow but wide in search of ‘rare and bright’ sources.
 ⇒ Better sky coverage, poor coverage of different cadences.

• Survey targeted fields at log-nested hierarchy of time intervals.
 → Go deep in search of ‘common and faint’ sources.
 ⇒ Better sampling of different timescales, less sky coverage.

• Piggyback on all other ASKAP survey observations.
 → “Free”, but no control on cadence or sky coverage.

• Also possible:
 • Regular monitoring of specific sources;
 • Triggered observations;
 • Archival searches for longer timescales;
 • ... etc.
VAST Strawman surveys

- Generally, $\Delta \nu = 300$MHz, 10 MHz channels, $\Delta t = 5$ sec, Full Stokes, 10’’ resolution.
VAST Strawman surveys

• Generally, $\Delta \nu = 300$MHz, 10 MHz channels, $\Delta t = 5$ sec, Full Stokes, 10" resolution.

• VAST-Wide: 10,000 sq deg observed daily.
 → 40 sec per field; 0.5 mJy/beam; 4380 hrs.
VAST Strawman surveys

- Generally, $\Delta \nu = 300\text{MHz}$, 10 MHz channels, $\Delta t = 5\text{ sec}$, Full Stokes, 10" resolution.

- VAST-Wide: 10,000 sq deg observed daily.
 \rightarrow 40 sec per field; 0.5 mJy/beam; 4380 hrs.

- VAST-Deep: 10,000 sq deg observed 7 times.
 \rightarrow 1 hr per field; 50 μJy/beam; 3200 hrs.
VAST Strawman surveys

- Generally, $\Delta \nu = 300\text{MHz}$, 10 MHz channels, $\Delta t = 5$ sec, Full Stokes, 10” resolution.

- VAST-Wide: 10,000 sq deg observed daily.
 \rightarrow 40 sec per field; 0.5 mJy/beam; 4380 hrs.

- VAST-Deep: 10,000 sq deg observed 7 times.
 \rightarrow 1 hr per field; 50 μJy/beam; 3200 hrs.

- VAST-Deep: 30 sq deg observed daily.
 \rightarrow 1 hr per field; 50 μJy/beam; 400 hrs.
VAST Strawman surveys

- Generally, $\Delta \nu = 300$ MHz, 10 MHz channels, $\Delta t = 5$ sec, Full Stokes, 10'' resolution.

- **VAST-Wide**: 10,000 sq deg observed daily.
 \rightarrow 40 sec per field; 0.5 mJy/beam; 4380 hrs.

- **VAST-Deep**: 10,000 sq deg observed 7 times.
 \rightarrow 1 hr per field; 50 μJy/beam; 3200 hrs.

- **VAST-Deep**: 30 sq deg observed daily.
 \rightarrow 1 hr per field; 50 μJy/beam; 400 hrs.

- **VAST-GP**: 750 sq deg observed 64 times.
 \rightarrow 16 min per field; 0.1 mJy/beam; 600 hrs.
ASKAP is optimized for survey speed: VAST will far exceed existing surveys on that metric.

(Analysis of 30-yr Molonglo archive, Bannister et al. 2011)
ASKAP is optimized for survey speed: VAST will *far exceed* existing surveys on that metric.

Major challenges ahead: what do we do with the data?
- Massive data volume: real-time detection pipeline.
- Reliable automated source finding.
- Multi-wavelength follow-up, source ID, classification.
- Database handling, algorithm development, etc.
Guitar Nebula: $V_\perp = 1640 \text{ km/s}$ at 1.9 kpc

Cordes, Romani, & Lundgren 1993; Chatterjee & Cordes 2002
1994 December: Narrow-band Hα; $T_{\text{int}} = 7200$ s; Drizzled.

Chatterjee & Cordes 2002, 2004
2001 December: Narrow-band H\textsubscript{\alpha}; T\textsubscript{int} = 17600 s; Drizzled.

Chatterjee & Cordes 2002, 2004
• Changing shape, stand-off distance trace changes in ISM.