Imaging a Pulsar's Scattering Disk

Happy 70 ${ }^{\text {th }}$ Miller!

Walter Brisken

National Radio Astronomy Observatory
2011 May 19

Scintillation Arcs

Dynamic Spectrum

$$
I(\nu, t)
$$

Discovery of Scintillation Arcs

$$
I(\nu, t)
$$

$$
S(T, R) \equiv|\mathcal{F}[I(\nu, t)]|^{2}
$$

see Stinebring et al., 2001 and Walker et al., 2005

Diffractive Scintillation Thin Screen Geometry

* Distance to pulsar $\equiv D_{\mathrm{psr}}$
* Distance to screen $\equiv D_{\mathrm{scr}}=(1-s) D_{\mathrm{psr}}$
* Effective distance $\equiv D_{\text {eff }}=\frac{1-s}{s} D_{\text {psr }}$
* Effective velocity $\equiv \vec{V}_{\text {eff }}=\frac{1-s}{s} \vec{v}$

Model of Parabolic Arcs

Delay coordinate

* From geometry

$$
T \equiv \tau_{1}-\tau_{2}=\frac{D_{\mathrm{eff}}}{2 c}\left(\theta_{1}^{2}-\theta_{2}^{2}\right)
$$

Doppler rate coordinate

* From time derivative of τ :

$$
R=\vec{V}_{\mathrm{eff}} \cdot\left(\overrightarrow{\theta_{1}}-\overrightarrow{\theta_{2}}\right)
$$

The parabola

* Assume dominating central concentration near $\vec{\theta}_{2}=0$
* Then:

$$
T \geq \frac{\lambda^{2} D_{\text {eff }}}{2 c V_{\text {eff }}^{2}} R^{2}
$$

* Equality occurs for $\vec{\theta}_{1} \| \vec{V}_{\text {eff }}$

Example 1

Core Disk Distribution

Example 2

10:1 Axial ratio || to velocity

VLBI Study of Scattering Screen

Goal 1

* Investigate arcs at very high frequency resolution

Goal 2

* Validate parabolic arc model
* Make model-independent image of scattering screen

Goal 3

* Break degeneracies
- Measure anisotropy of scattering
- Determine orientation for improved interpretation of single-dish data

The Ad-hoc VLBI Array

* Need: Low freq, long baselines, high sensitivity \& mutual visibility * Array: GB (100 m), AO (305 m), JB (76 m) and WB (93 m equiv.)

Experimental Setup

The observation

* Target: pulsar B0834+06
* 2 hours on source
* Frequency: 310 to 342 MHz with dual circular polarization

Correlation

* Used Adam Deller's nascent DiFX software correlator at Swinburne Univ.
* 131072 spectral channels (244 Hz resolution)
* 1.25 second integrations
* Pulsar gate used to boost signal-to-noise ratio

Visibility Dynamic Spectrum (AR-GB)

* ~ 600 seconds \uparrow of data over $\sim 200 \mathrm{kHz} \rightarrow$
* Amplitude mapped to intensity
* Phase mapped to color (red to blue)
* Note, only a very small piece of the dynamic spectrum is shown

Visibility Secondary Spectrum (AR-GB)

see Brisken et al. 2010

Mining a rich data set

For each point in the secondary spectrum

* Delay, T
* Doppler rate, R
* Amplitude (on each baseline)
* Phase (on each baseline)

Phases yield sky coordinates

* $\phi=\frac{2 \pi \nu}{c}(u l+v m)$ (as for interferometry)
* Can directly test $T=\frac{D_{\text {eff }}}{2 c} \theta^{2}$ and $R=\vec{V}_{\text {eff }} \cdot \vec{\theta} \ldots$
* \ldots and determine $D_{\text {eff }}$ and $\vec{V}_{\text {eff }}$

Astrometrically Recovered Image

Physical Parameter Estimation

Velocity fit

* $D_{\text {eff }}=1171 \pm 10 \mathrm{pc} \rightarrow D_{\text {scr }}=415 \pm 5 \mathrm{pc}$
* $V_{\text {eff, } \|}=305 \pm 3 \mathrm{~km} \mathrm{~s}^{-1}$
* $V_{\text {eff }, \perp}=-150 \pm 5 \mathrm{~km} \mathrm{~s}^{-1}$

Model Recovered Image

Pulsar timing effects

Conclusion

Stationary Phase Points I

Delay model

$$
\tau(\vec{\theta})=\frac{D_{\text {eff }}}{2 c} \theta^{2} \text { with direct path: } \tau(\vec{\theta}=0) \equiv 0
$$

Propagation via Fresnel-Kirchhoff integral

$$
\vec{E}(\nu) \propto \nu \int e^{-2 \pi i \nu \tau(\vec{\theta})} d \vec{\theta} \vec{E}_{\mathrm{psr}}(\nu)
$$

In diffractive scintillation, this integral is dominated by points where constructive interference gives rise to high magnification,

$$
\vec{\nabla} \tau(\vec{\theta})=0
$$

which are called stationary phase points. Their brightness contribution is related to their magnification

$$
\mu=\left[\nu \nabla^{2} \tau(\vec{\theta})\right]^{-1}
$$

Stationary Phase Points II

Propagation (cont.)

The Fresnel-Kirchhoff integral

$$
\vec{E}(\nu) \propto \nu \int e^{-2 \pi i \nu \tau(\vec{\theta})} d \vec{\theta} \vec{E}_{\mathrm{psr}}(\nu)
$$

can then be turned into a sum over stationary phase points, $\vec{\theta}_{j}$:

$$
\vec{E}(\nu) \propto \nu \sum_{j} \mu_{j} e^{-2 \pi i \nu \tau\left(\overrightarrow{\theta_{j}}\right)} \vec{E}_{\mathrm{psr}}(\nu)
$$

Simplifying assumption
Geometry of screen remains fixed

$$
\frac{d \overrightarrow{\theta_{j}}}{d t}=0
$$

