Imaging a Pulsar's Scattering Disk

Happy 70th Miller!

Walter Brisken

National Radio Astronomy Observatory

2011 May 19

Scintillation Arcs

Dynamic Spectrum

$$I(\nu, t)$$

Discovery of Scintillation Arcs

see Stinebring et al., 2001 and Walker et al., 2005

Diffractive Scintillation Thin Screen Geometry

- * Distance to pulsar $\equiv D_{\rm psr}$
- * Distance to screen $\equiv D_{\rm scr} = (1-s)D_{\rm psr}$
- * Effective distance $\equiv D_{\rm eff} = \frac{1-s}{s}D_{\rm psr}$
- * Effective velocity $\equiv ec{V}_{
 m eff} = rac{1-s}{s}ec{v}$

see Cordes et. al, 2006

Delay coordinate

* From geometry

$$T \equiv \tau_1 - \tau_2 = \frac{D_{\text{eff}}}{2c} (\theta_1^2 - \theta_2^2)$$

Doppler rate coordinate

* From time derivative of τ :

$$R = \vec{V}_{\text{eff}} \cdot (\vec{\theta_1} - \vec{\theta_2})$$

The parabola

- * Assume dominating central concentration near $ec{ heta}_2=0$
- * Then:

$$T \ge \frac{\lambda^2 D_{\text{eff}}}{2cV_{\text{eff}}^2} R^2$$

 $*\,$ Equality occurs for $\vec{\theta_1}\parallel\vec{V}_{\rm eff}$

Example 1

Example 2

Goal 1

* Investigate arcs at very high frequency resolution

Goal 2

- * Validate parabolic arc model
- * Make model-independent image of scattering screen

Goal 3

- * Break degeneracies
 - Measure anisotropy of scattering
 - Determine orientation for improved interpretation of single-dish data

The Ad-hoc VLBI Array

Image courtesy of Google

* Need: Low freq, long baselines, high sensitivity & mutual visibility

 $\ast\,$ Array: GB (100 m), AO (305 m), JB (76 m) and WB (93 m equiv.)

The observation

- * Target: pulsar B0834+06
- * 2 hours on source
- * Frequency: 310 to 342 MHz with dual circular polarization

Correlation

- * Used Adam Deller's nascent DiFX software correlator at Swinburne Univ.
- * 131072 spectral channels (244 Hz resolution)
- * 1.25 second integrations
- * Pulsar gate used to boost signal-to-noise ratio

Visibility Dynamic Spectrum (AR-GB)

- * $\,\sim\,600$ seconds \uparrow of data over $\sim\,200$ kHz \rightarrow
- * Amplitude mapped to intensity
- * Phase mapped to color (red to blue)
- * Note, only a very small piece of the dynamic spectrum is shown

Visibility Secondary Spectrum (AR-GB)

see Brisken et al. 2010

For each point in the secondary spectrum

- $\ast\,$ Delay, T
- \ast Doppler rate, R
- * Amplitude (on each baseline)
- * Phase (on each baseline)

Phases yield sky coordinates

- * $\phi = \frac{2\pi\nu}{c}(ul + vm)$ (as for interferometry)
- * Can directly test $T = \frac{D_{\mathrm{eff}}}{2c} \theta^2$ and $R = \vec{V}_{\mathrm{eff}} \cdot \vec{\theta} \dots$
- * . . . and determine $D_{
 m eff}$ and $ec{V}_{
 m eff}$

Astrometrically Recovered Image

Physical Parameter Estimation

* $V_{\text{eff},||} = 305 \pm 3 \text{ km s}^{-1}$ * $V_{\text{eff},\perp} = -150 \pm 5 \text{ km s}^{-1}$

Model Recovered Image

Pulsar timing effects

Conclusion

Stationary Phase Points I

Delay model
$$au(ec{ heta})=rac{D_{ ext{eff}}}{2c} heta^2$$
 with direct path: $au(ec{ heta}=0)\equiv 0$

Propagation via Fresnel-Kirchhoff integral

$$ec{E}(
u) \propto
u \int e^{-2\pi i
u au(ec{ heta})} dec{ heta} \ ec{E}_{
m psr}(
u)$$

In diffractive scintillation, this integral is dominated by points where constructive interference gives rise to high magnification,

$$\vec{\nabla}\tau(\vec{\theta}) = 0,$$

which are called *stationary phase points*. Their brightness contribution is related to their magnification

$$\mu = \left[\nu \nabla^2 \tau(\vec{\theta})\right]^{-1}$$

Propagation (cont.)

The Fresnel-Kirchhoff integral

$$\vec{E}(\nu) \propto \nu \int e^{-2\pi i \nu \tau(\vec{\theta})} d\vec{\theta} \ \vec{E}_{\rm psr}(\nu)$$

can then be turned into a sum over stationary phase points, $\vec{\theta_j}$:

$$\vec{E}(\nu) \propto \nu \sum_{j} \mu_{j} e^{-2\pi i \nu \tau(\vec{\theta_{j}})} \vec{E}_{\rm psr}(\nu)$$

Simplifying assumption

Geometry of screen remains fixed

$$\frac{d\vec{\theta_j}}{dt} = 0$$