CO Multi-scale Mosaics Of Nearby (COMMON) Star Formation

Collaborators: Hétor Arce (Yale), Scott Schnee & Anneila Sargent (CIT), Dick Plambeck & Melissa Enoch (Berkeley)

Outline

- Initial regions and status
- Future work: more regions, more lines
- ALMA: Will be great for this project and is moving along

- The majority of mass in nearby star-forming regions is in large scale structures, structures that interferometers filter out but the feedback is on much smaller scales.
- The resolution of single dish telescopes allows for at best about 7" resolution (with most being significantly poorer).
- Given the distance to nearby star-forming regions (140-500 pc), the physical resolution achievable with single dish telescopes is typically insufficient to probe many important spatial scales:
 - The outflow-ambient cloud interface
 - The circumstellar envelope
 - The outflow kinematics
- Therefore a combination of interferometric mosaics of these regions and single dish surveys is required

- Initial mass function of condensations
- Structure and kinematics of cavities left by previous generations of outflows
- Structure of current outflows and their interaction with the ambient cloud
- Small scale kinematics in the cloud

- CO was chosen because it is detectable even in reletively diffuse environments
- The J=I-0 transition was selected because it maximizes beam size and limits the importance of phase stability over other CO transitions.
- ¹²CO, ¹³CO and C¹⁸O were selected to probe different density environments and because they are often observable simultaneously.
- CARMA was the interferometer of choice because of its unparalleled uv-coverage among millimeter interferometers and compact configurations.

Regions Selected

- NGCI333 and BI in Perseus and Serpens A were selected because single dish ^{12,13}CO data is available through the COMPLETE project (Goodman et al.)
- Continuum maps with BOLOCAM (CSO) are available at 1.1 mm (Enoch et al.)
- These regions are also quite active providing the possibility of truly testing the influence of outflow feedback across many scales
- These regions are somewhat compact so they can be mosaiced in relatively few (<300) pointings with CARMA.

NGC 1333 and BI

Age ~ I Myr
Distance ~ 235 pc
Mass ~ 5000-10⁴

NGC 1333 Status

- Data reduced:
 - BIMA ¹²CO (klam~2.5-27)
 - BIMA HCN (klam~2-23)
 - FCRAO 14-m ^{12,13}CO
 - CSO I0-m I.I mm continuum
- Data in hand:
 - CARMA ^{12,13}C¹⁸O (klam~3-45)
 - CARMA 3 mm continuum (klam~3-45)
- Data to be take:
 - CARMA compact configuration in at least ¹³CO, C¹⁸O
 - CARMA compact configuration data in continuum

BI Status

- All data obtained.
- Data reduced:
 - FCRAO 14-m ^{12,13}CO
 - CSO I0-m I.I mm continuum
- Data in hand:
 - CARMA ^{12,13}C¹⁸O (klam~2.5-45)
 - CARMA 3 mm continuum (klam~2.5-45)
- First look shows that the region is fairly empty in continuum.

)EC (J2000

- Age ~I Myr
- Distance ~ 230 pc
- Mass ~ 3500

- All data obtained.
- Data reduced:
 - FCRAO 14-m ^{12,13}CO
 - CSO I0-m I.I mm continuum
 - CARMA ^{12,13}C¹⁸O (klam~2.5-45)
 - CARMA 3 mm continuum (klam~2.5-45)
 - i.e., everything.

• Actual new data!

- Still need to combine single dish
- CO image must have single dish but there are "problems"

RA (J2000)

• Actual new data!

- Still need to combine single dish
- CO image must have single dish but there are "problems"

Additional Regions

- Orion (high priority but where to start?)
- Taurus (too diffuse?)
- Southern regions (good ALMA targets):
 - ρOph
 - Chamaelon
 - Lupus
 - Corona Australis

The Future

- Near future:
 - NH₃ with GBT and EVLA: Same regions but dense tracer.
 - ALMA+ACA observations in 2-1 transitions to get temperature information
 - Integrate optical/ir studies
- Far future: Do this much better if we get focal plane arrays on ALMA someday....

- Antenna Tally:
 - Conditionally Accepted: 2/1/0
 - Additional On-site: 7/3/parts of 2

- Front end tally:
 - 3 engineering models accepted (also conditional)
 - Bands 3 (3 mm), 6 (1mm), 7 (850 μm) and 9 (450 μm) present

- "The schedule": AIVC
 - Fringes at the OSF: (late) June
 - Fringes at the high site: December 2009 (this year)
 - Call for early science: late 2010
 - Start early science: second half 2011
- "The team":
 - AIV
 - CSV
 - SciOps
 - System Engineering, Computing, and many others
 - And you?

Also: Optical Pointing, Radio pointing, T_{rx} characterization (first round holography done)

Also: Optical Pointing, Radio pointing, T_{rx} characterization (first round holography done)

Amplitude Calibration

- Measure T_{sys} and T_{rx} on the telescope
- Jy/K
- Aperture and Main Beam efficiency
- Interferometry.....
- NEXT!

The end is here...

- Summary:
 - The COMMON Star Formation project is well underway
 - There is plenty of room for expansion and collaboration
 - ALMA will provide a great leap forward
 - Come and help if you are interested! (3 month minimum stay in Chile)