Mass Loss in Rotating Stellar Models

Catherine Lovekin

Los Alamos National Laboratory

November 5, 2010

(日) (四) (분) (분) (분) 분

- Massive stars lose mass through radiative line driving
- Provides energy and momentum to the ISM
- Can produce circumstellar shells expected to affect subsequent supernovae
- Mass loss influences the stellar evolution
- Affects atmospheric structure needs to be understood to derive stellar paremeters

Stellar Winds

イロト イヨト イヨト イヨト

LANL

Credit: NASA, ESA, Y. Nazé and Y.-H. Chu

Catherine Lovekin Mass Loss in Rotating Stellar Models

Original theory describing radiatively driven winds derived by Castor, Abbott and Klein (1979) made 4 basic assumptions:

The Sobolev approximation

Radiative interactions are determined locally

<ロト < 回 > < 回 > < 回 > < 回 >

Original theory describing radiatively driven winds derived by Castor, Abbott and Klein (1979) made 4 basic assumptions:

- The Sobolev approximation
- Core-halo separation

Assume the continuum, which is formed in the photosphere is formed at a different level than lines Can then take the continuum intensity to be constant in the wind

Original theory describing radiatively driven winds derived by Castor, Abbott and Klein (1979) made 4 basic assumptions:

- The Sobolev approximation
- Core-halo separation
- No limb-darkening

Intensity (and flux) are the same across the visible disk

Original theory describing radiatively driven winds derived by Castor, Abbott and Klein (1979) made 4 basic assumptions:

- The Sobolev approximation
- Core-halo separation
- No limb-darkening
- Radial streaming

All photons travel only radially - no angular contribution This is expected to hold far from the star, but is not a good approximation close to the surface

Theory - Kudritzki et al

- Extension to CAK theory - relaxes 4th assumption
- Photons now have an angular component
- Analytic solutions worked out by Kudritzki et al, 1989

Kudrtizki et al, 1989

<ロト <問ト < 臣ト < 臣

Compare 3 mass loss rate prescriptions: Castor, Abbott & Klein (1979) (CAK)

The original theoretical derivation of mass loss rates

$\dot{M} \propto L$

Dependence on metallicity is not explicit

<ロト < 回 > < 回 > < 回 > < 回 >

LANL

Catherine Lovekin Mass Loss in Rotating Stellar Models

Compare 3 mass loss rate prescriptions:

- Castor, Abbott & Klein (1979) (CAK)
- Kudritzki et al (1989)

Basically the same as CAK, but includes the finite disk effects

<ロト </p>

Compare 3 mass loss rate prescriptions:

- Castor, Abbott & Klein (1979) (CAK)
- Kudritzki et al (1989)
- Vink, de Koter & Lamers (2001)

Based on Monte Carlo calculations of radiation transfer in stellar atmosphere models

 $\dot{M} \propto L, M, T_{eff}$ and Z

Stellar Rotation	2D Models	Mass loss in 1D	Mass loss in 2D	Conclusions

Rotation

Credit: J. Morse, K. Davidson et al., WFPC2, HST, NASA

Catherine Lovekin Mass Loss in Rotating Stellar Models 2

▲□▶ ▲圖▶ ▲温▶ ▲温≯

Rotation

- Many massive stars are known to rotate - probably most are born as rapid rotators
- Rotation causes the star to become flattened
- Pole becomes hotter than equator (eg., von Zeipel, 1924)

LANL

- 2D stellar structure and evolution code, ROTORC (Deupree 1990, 1995)
- Use fractional radius, $x = r/R_{eq}$ and θ as independent variables
- Surface defined to be an equipotential
- flux, temperature and radius all allowed to vary as a function of θ

		2D Models	Mass loss in 1D	Mass loss in 2D	Conclusions
Stellar M	adala				

20 M_{\odot} ZAMS models:

V_{eq}	Ω/Ω_c	R_{eq}	R_p/R_{eq}	T _{eff}	ΔT	L/L_{\odot}
(km/s)		(R_{\odot})		(K)	(K)	
0	0	5.835	1.000	34476	0	42899
200	0.3	5.991	0.969	34090	1161	42313
375	0.5	6.437	0.892	33168	3866	41196
550	0.7	7.376	0.770	31802	7899	40122

2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

	2D Models	Mass loss in 1D	Mass loss in 2D	Conclusions

1D Models

blue - CAK red -Kudritzki green - Vink

・ロト ・聞ト ・ヨト ・ヨト

2

LANL

Catherine Lovekin Mass Loss in Rotating Stellar Models

- \blacksquare Δ $T_{\it eff}$ in these models ranges from 1200K at 200 km/s to almost 8000K at 550 km/s
- Mass loss rates are sensitive functions of effective temperature

- \blacksquare Δ $T_{\it eff}$ in these models ranges from 1200K at 200 km/s to almost 8000K at 550 km/s
- Mass loss rates are sensitive functions of effective temperature
- How will this change the mass loss rates?

		2D Models	Mass loss in 1D	Mass loss in 2D	Conclusions
2D Mod	els				

 $200 \text{ km/s} = 0.3 \ \Omega_c$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

2

LANL

Catherine Lovekin

Mass Loss in Rotating Stellar Models

- 2D mass loss rate is 0.03 dex larger at the pole, 0.02 dex smaller at the equator
- \blacksquare Total mass lost is the same to within about 0.1 %
- But: mass loss is 8 % greater at pole, 4 % lower at the equator

	2D Models	Mass loss in 1D	Mass loss in 2D	Conclusions

2D Models

2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

- 2D mass loss rate is now 0.15 dex larger at the pole, 0.2 dex smaller at the equator
- \blacksquare Difference in total mass lost is still less than 1 %
- But: mass loss is 47 % greater at pole, 42 % lower at the equator

	2D Models	Mass loss in 1D	Mass loss in 2D	Conclusions

2D Models

Catherine Lovekin Mass Loss in Rotating Stellar Models 2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

	2D Models	Mass loss in 1D	Mass loss in 2D	Conclusions

Catherine Lovekin Mass Loss in Rotating Stella<u>r Models</u> 2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

2D Models

LANL

Catherine Lovekin Mass Loss in Rotating Stellar Models

2D Corrections to 1D Models

Calculate effects of rotation in 1D: Effects of gravity are reduced by a centrifugal term:

$$g_{eff} = \frac{GM}{R^2} \left(1 - \frac{V_{rot}^2 R}{GM} sin^2 \theta \right)$$

then:

$$\frac{\dot{m}(\theta)}{\dot{m}_o} = \left[\frac{F(\theta)}{F_o}\right]^{1/\alpha} \left[\frac{g_{eff}(\theta)}{g_o}\right]^{1-1/\alpha}$$

Catherine Lovekin Mass Loss in Rotating Stellar Models

2D Corrections to 1D Models

Assume von Zeipel's law holds: $F(\theta) \sim g_{eff}(\theta)$ then:

$$rac{\dot{m}(heta)}{\dot{m}_o} = 1 - rac{V_{rot}^2 R}{GM} sin^2 heta$$

Catherine Lovekin Mass Loss in Rotating Stellar Models 2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Mass loss in 10

Comparing 2D Corrections to 2D Models

Comparing 2D Corrections to 2D Models

Comparing 2D Corrections to 2D Models

Comparing 2D Corrections to 2D Models

Stellar Winds		2D Models	Mass loss in 1D	Mass loss in 2D	Conclusions
Conclusi	ons				

- Vink mass loss rates agree with theoretical predictions from Kudritzki
- Even at low rotation rates (0.3 Ω_c) 2D effects can be important
- Rotation effects become more pronounced as rotation rate increases
- Simple 1D calculations underestimate mass loss at pole, overestimate loss at equator
- 2D corrections to 1D rates using von Zeipel's law are better, but still overestimate mass loss at equator
- Change in distribution of mass loss will change amount of angular momentum lost

<ロ> (日) (日) (日) (日) (日)

- Calculate angular momentum loss from 2D models
- Incorporate mass loss into evolution models
- Study how accumulated differences affect evolution
- Models can be used as input for other problems supernovae, X-ray binaries, etc