Compact Symmetric Objects in the VLBA Imaging and Polarization Survey

A study of half-pint radio galaxies

Steven Tremblay (UNM)
Greg Taylor (UNM, NRAO), Joe Helmboldt (NRL), Roger Romani (Stanford)

NM Research Symposium
November 5, 2010
Compact Radio Sources
Blazars

Size:
No Limit

Orientation:
Looking down the jet

Characteristics:
High Variability
High Polarization
Superluminal Motion

Marscher et. al
Compact Symmetric Objects

Size:
< 1 kpc (projected)

Orientation:
‘Close’ to the plane of the sky

Characteristics:
Low Variability
Low Polarization
Often CSS/GPS sources

Sources could be:
Young
Frustrated
Periodic
VIPS: Source Classification

- Point Source 276
- Short Jet 241
- Long Jet 471
- CSO Candidate 103
- Complex 17
- Not Detected 11
CSO Candidates
Follow-up Observations
- 5, 8, 15 GHz VLBA
- Full polarization

Spectral classification:
$$F_{\nu} \propto \nu^\alpha$$

Kinematic Analysis
Ages/Dynamics

Polarization Analysis
The Numbers

- Confirmed CSOs - 24 (~2% VIPS)
- FR1 morphologies - 4 (~17%)
- Cores detected - 16 (~67%)
- Redshifts - 16 (~67%)
- Detected @ 15 GHz - 15 (~63%)
- Polarized - 2 (~8%)
- CSO Candidates - 33 (~3% VIPS), 5 ‘Hybrid’
Histogram of CSO Sizes (Hotspot-Hotspot)
Q&D Age Estimates

CSO 'Age' Histogram

Age (years) vs. Number

Age values range from 500 to 9000 years.
Size and Luminosity

Size vs. Luminosity

Luminosity_5GHz (W)

Size (pc)

CSOs
FRI-like CSOs

Graph showing the relationship between size and luminosity.
Size and Angle Subtended

Correlation Coefficient: 0.63
Core to Hotspot Length Ratios

CSO Arm Ratio Histogram

R_{bright}/R_{dim}

Number
Hotspot Flux and Arm Ratios

Flux Ratio vs. Arm Ratio
Hotspot Flux and Arm Ratios

Flux Ratio vs. Arm Ratio w/o J07414+271
Hotspot Flux and Arm Ratios

Flux Ratio vs. Arm Ratio w/o J07414+271

Correlation Coefficient: -0.28
Things not (or weakly) Correlated

- Size & Flux Ratio: -0.07
- Angle & Flux Ratio: -0.1
- Angle & Arm Ratio: -0.17
- 4.1% of 5 GHz total lobe flux density is polarized
- B-Fields ~ 0.06 - 2 µG
- Lobe flux density ratio (5 GHz): 1.59
1. 1.1% of 8 GHz total lobe flux density is polarized
2. B-Fields \(\sim 0.36 - 12 \mu G \)
3. Lobe flux density ratio (5 GHz): 19.36
VIPS CSOs

• Increases number of known CSOs by at least 1/2

• Gives ‘complete’ sample to study

• Indicates CSOs tend to ‘straighten out’ with size

• Polarization results consistent with Unification

• Needs further multi-frequency, multi-epoch ‘follow up’
Backup Slides
<table>
<thead>
<tr>
<th>Source Name</th>
<th>Obs. Core?</th>
<th>FR1 Morphology?</th>
<th>Auto Class.</th>
<th>Redshift</th>
</tr>
</thead>
<tbody>
<tr>
<td>J07414+2706</td>
<td>Y</td>
<td></td>
<td>LJET</td>
<td>0.77</td>
</tr>
<tr>
<td>J07542+5324</td>
<td>N</td>
<td></td>
<td>CSO</td>
<td>?</td>
</tr>
<tr>
<td>J09062+4636</td>
<td>Y</td>
<td>Y</td>
<td>CPLX</td>
<td>0.0848</td>
</tr>
<tr>
<td>J09432+1702</td>
<td>Y</td>
<td></td>
<td>CSO</td>
<td>1.598</td>
</tr>
<tr>
<td>J10351+5628</td>
<td>N</td>
<td></td>
<td>CSO</td>
<td>0.45</td>
</tr>
<tr>
<td>J10426+2949</td>
<td>Y</td>
<td></td>
<td>CSO</td>
<td>?</td>
</tr>
<tr>
<td>J11113+1955</td>
<td>N</td>
<td></td>
<td>CSO</td>
<td>0.2991</td>
</tr>
<tr>
<td>J11359+4258</td>
<td>N</td>
<td></td>
<td>CSO</td>
<td>?</td>
</tr>
<tr>
<td>J11488+5924</td>
<td>Y</td>
<td>Y</td>
<td>LJET</td>
<td>0.010751</td>
</tr>
<tr>
<td>J11584+2450</td>
<td>Y</td>
<td></td>
<td>CPLX</td>
<td>0.2016</td>
</tr>
<tr>
<td>J11598+5820</td>
<td>N</td>
<td></td>
<td>CSO</td>
<td>1.278</td>
</tr>
<tr>
<td>J12043+5202</td>
<td>Y</td>
<td></td>
<td>CSO</td>
<td>?</td>
</tr>
<tr>
<td>J12201+2916</td>
<td>Y</td>
<td>Y</td>
<td>CSO</td>
<td>0.002165</td>
</tr>
<tr>
<td>J12279+3635</td>
<td>N</td>
<td></td>
<td>LJET</td>
<td>1.973</td>
</tr>
<tr>
<td>J12342+4753</td>
<td>Y</td>
<td>Y</td>
<td>CSO</td>
<td>0.373039</td>
</tr>
<tr>
<td>J12448+4048</td>
<td>Y</td>
<td></td>
<td>LJET</td>
<td>0.813</td>
</tr>
<tr>
<td>J12545+1856</td>
<td>Y</td>
<td></td>
<td>LJET</td>
<td>0.1145</td>
</tr>
<tr>
<td>J13113+1658</td>
<td>Y</td>
<td></td>
<td>CSO</td>
<td>?</td>
</tr>
<tr>
<td>J13262+3154</td>
<td>Y</td>
<td></td>
<td>CSO</td>
<td>0.37</td>
</tr>
<tr>
<td>J13354+5844</td>
<td>?</td>
<td></td>
<td>CSO</td>
<td>?</td>
</tr>
<tr>
<td>J14136+1509</td>
<td>Y</td>
<td></td>
<td>CSO</td>
<td>?</td>
</tr>
<tr>
<td>J14142+4554</td>
<td>?</td>
<td></td>
<td>CSO</td>
<td>0.186</td>
</tr>
<tr>
<td>J16449+2536</td>
<td>Y</td>
<td></td>
<td>LJET</td>
<td>0.588</td>
</tr>
<tr>
<td>J17003+3830</td>
<td>Y</td>
<td></td>
<td>LJET</td>
<td>?</td>
</tr>
</tbody>
</table>
Multi-scale SEDs
Polarized CSOs

• 3/4 Show abnormally high flux density ratios
• 4/4 Polarization detected in brightest Hotspot
• 1/4 additional detection of jet polarization closer to core as well
• 2/3 Exhibit low (100s rad m\(^{-2}\)) RMss