

Greg Taylor (UNM)

New Mexico Symposium November 5, 2010

> http://lwa.unm.edu and see Poster by Joe Craig et al.

53 53

LWA Science

Astrophysics

Cosmology

Observing cosmic dawn through redshift 30 absorption of the 21 cm line. High redshift radio galaxies, containing the earliest black holes

Acceleration, Propagation & Turbulence in the Interstellar Medium

Origin, spectrum & distribution of Galactic cosmic rays Supernova remnants & Galactic evolution Pulsars

Solar Science & Space Weather

Radio heliography of solar bursts & coronal mass ejections Solar radar

Exploration of the Transient Universe

New coherent sources (More GCRT J1745-3009s?) GRB Prompt Emission Magnetar Flares Extra-Solar Jupiters: Detect magnetic field; conditions for life? *Poorly explored parameter space...new sources*

Ionospheric Physics

Unprecedented continuous spatial & temporal imaging of the ionosphere

Test and improve global ionospheric models

LWA-1 Ribbon Cutting, April 2010

The LWA Instrument

Radio Frequency Interference (RFI)

Front-End Electronics (FEE)

Gain	36 dB		
Noise Temperature	250 K		
Input P1dB	-18.3 dBm		
Input IP3	-1.8 dBm		
Current Draw @ +15VDC	230 mA		

Analog Receiver (ARX)

65

60

55

45

40

35

30 0

10

20

30

50

40 Frequency [MHz] 60

70

80

90

Gain [dB]

• 8 - 68 dB Gain (2 dB steps) • Filterbank with 3 configurations • Full Bandwidth: 10 - 88 MHz • Reduced Bandwidth: 28 - 54 MHz Split Bandwidth: 10 - 88 MHz, 30 dB of gain control over the low-frequency portion of the passband (equalizer) • Integrated bias-tee to power FEE

32 ARX boards per station

Digital Processor (DP)

One of 28 "DP" boards 5 Xilinx Virtex-5 SX50T FPGAs

- 12 bit x 196 MSPS direct sampling
- 10-88 MHz operations
- About to start production boards

•Output Modes DRX: 4 beams (x 2 pol x 2 tunings) at 19.6 MSPS

TBW: Full RF in a 61 ms burst

TBN: 100 kHz from all antennas continuously

ATCA Chassis Fits 13 DP/DIG boards

TBN mode

MCS & Data Recorders

• Scalable, open-architecture Monitoring & Control System (MCS)

• On-site data recording & off-line processing in lieu of correlator

• Using new PC-based data recorders

• Each PC streams 115 MB/s continuously for 10 hours onto a 5 TB "DRSU" (hard drive array)

• Low cost: PCs are US\$2K/ea, DRSUs are US\$875/ea

Prototype All-Sky Imager (PASI)

- A backend for LWA-1 station
- Funding (\$70k) provided by the NMCIAS
- PASI is a computer cluster supporting software to do real-time correlation of TBN data for all-sky imaging in a narrow (100 kHz) band
- Goals:
 - Source-agnostic survey of the entire sky every day to a depth of 10 Jy/beam (confusion limit)
 - Searches for known transients (e.g., Jovian bursts) and new types of transients
 - Development test-bed for new algorithms (e.g., RFI rejection, widefield imaging)
 - Educational tool

 PASI is a cluster of 4 IBM Nehalem server nodes hooked together with an Infiniband switch. 8 CPUs in each node ~ 100 Cflops

Radiometric Stability

- Center Freq: 72.24 MHz
- 2.45 MHz Bandpass
- 915 Hz per channel
- 2600 channels shown
- RFI...
- Freq. domain blanking only
- Discarded 20% of band (generous) due to weak RFI
- Data collected between 2 3 AM continuously
- Production hardware from antennas to ARX
- Analog beamforming of 8 dipoles (static pointing)
- Sampled & downconverted by s60
 system
- Model fit the diurnal total power, measured every 1 sec.
 Spline interpolant model fit of bandpass

LWA-2 Site (NA)

LWA-2 Site (NA)

HALO array working at 6-10 MHz

Future

Support from primary sponsor formally ends September 2011

- Sufficient to complete LWA-1 commissioning, but not much more
- Furiously writing proposals Some alternative funding obtained; additional proposals pending
- Development/preparation of sites for LWA-2 (NA) + LWA-3 (HM) with baselines 19 km, 35 km, and 43 km
- Leases and CatEx's for these sites already obtained

Technical Specifications:

		<u>Required</u>	<u>A</u>
•	Frequency Range:	20 MHz to 80 MHz	10
•	Angular resolution:	$\theta \le [8,2]$ "	θ
•	LAS at [20,80] MHz	\geq [8,2]°	\geq
•	Baseline range:		
•	Sensitivity [20,80 MHz]:		
•			
•			
	$\Delta v_{\rm max}$ (per beam)	$\Delta v \ge 4 \text{ MHz}$	Δι
	Δv_{\min}	$\Delta \nu \leq 100 \text{ Hz}$	Δι
•	Temporal Res	$\Delta \tau = 10 \text{ msec}$	Δτ
•	Polarization:	1 circular	Fu
•	Sky Coverage:	$z \ge 40^{\circ}$	Z 2
•	FoV [20,80] MHz	[8,2]°	\leq
•	# of beams:	4 single pol.	4 s

<u>chieved</u> MHz to 88 MHz ≤[7,1.4]" [16,4]° = 20 MHz $\leq 10 \text{ Hz}$ $\leq 0.1 \text{ msec}$ 15° 16,4]° single pol.

Backup Slides

All-Sky Imaging

LWA Collaboration

- Antennas NRL
- Analog Signal Processor UNM
- Digital Signal Processor JPL
- Monitoring & Control System VT
- Shelter and Site UNM
- Correlator not started

Deep Shace Networl

IPL

Funds in-hand sufficient to complete LWA-1 and start-commissioning, but.

LWA Phased Deployment

	LWA-1(+)	LWIA	LWA	Remarks
Freq Range	[20,80] MHz			[10,88] MHz ext.
No. of Stations	1 (+2 small)	16	53	
Max Baseline	(TBD)	200 km	400 km	min: 100 m (core)
Image Resolution	(TBD)	[15,4]"	[8,2]''	
T _{sys}	G.N.D.*			9000 K @ 38 MHz
Sensitivity/beam	[40, 25] mJy	[3, 2] mJy	[0.8, 0.5] mJy	2 pol, 1 h, 8 MHz
sky coverage	$\theta < 74^{\circ}$			includes GC
FOV size	[8,2] ^o			zenith pointing
Simult. beams	3			ortho. circ. pols.
Time resolution	1 ms (5 ns)			(raw sample mode)
Freq resolution	100 Hz			
data rate	576 Mb/s	9.3 Gb/s	30 Gb/s	sum of stations

Engaging Students

UNM

- PhDs awarded ~1 Mike Nord (2005) using VLA 74 MHz system
- graduate students: Frank Schinzel, Steve Tremblay, Eduardo Gonzalez, Su Zhang, Adam Martinez
- undergrads: Stefanie Moats, Dave Martin, Anthony Ortiz, Bobby Edmonds, and others

Key LWA Science Drivers

- 1. Acceleration of Relativistic Particles in:
 - C3 Hundreds of SNRs in normal galaxies at energies up to 10^{15} eV.
 - C3 In thousands of radio galaxies & clusters at energies up to 10^{19} eV
 - C3 In ultra high energy cosmic rays at energies up to 10^{21} eV and beyond.
- 2. Cosmic Evolution & The High Redshift Universe
 - C3 Evolution of Dark Matter & Energy by differentiating relaxed & merging clusters
 - Study of the 1st black holes & the search for HI during the EOR & beyond
- 3. Plasma Astrophysics & Space Science
 - C3 Ionospheric waves & turbulence
 - C3 Acceleration, Turbulence, & Propagation in the ISM of Milky Way & normal galaxies.
 - Solar, Planetary, & Space Weather Science
- 4. Transient Universe
 - C3 Possible new classes of sources (coherent transients like GCRT J1745-3009)
 - **C3** Magnetar Giant Flares
 - C3 Extra-solar planets
 - **C3** Prompt emission from GRBs

VLA Ionospheric studies at 74 MHz

LWA Discovery Space in frequency and resolution

