3-D Simulations of the Cold, Thin Atmospheres of Triton and Pluto

Chas Miller, Dr. Nancy J. Chanover, Dr. James R. Murphy New Mexico State University November 5, 2010

Outline

- The atmospheres of Triton and Pluto
- Applying the Ames General Circulation Model
- Initial Results
 - N₂ ice covered globeExposed southern pole
- Future work

Atmospheres of "Terrestrial" Solar System Bodies

Surface Pressure (bar = 10⁵ Pa)

Triton & Pluto

- Both are likely Kuiper Belt Objects
 - Density: 2.0 g/cm³
 - Radius: Triton = 1353 km, Pluto = 1152 ± 32 km
 - Rotation Rate: Triton = 5.877 day, Pluto = 6.387 day
 - Distance from Sun: Triton = 30.1 AU, Pluto = 31.9 AU
 - Surface Gravity: Triton = 0.78 m/s^2 , Pluto = 0.65 m/s^2
- Similar Atmospheres
 - Mostly (> 99% N_2), trace CH_4 , CO
 - Surface pressure of 8-24 microbars (0.8 2.4 Pa)

Pluto Nix Charon Hydra

Motivation

- Unique type of atmosphere
 - Latent heat on order of solar insolation
 - No dynamical (GCM) atmosphere simulation reported in the literature
- Likely other KBOs have similar atmospheres
- Pushes the limits of General Circulation Models
- New Horizons due at Pluto July 2015

Energy Balance

- Solar insolation = 1.5 W/m^2
- Latent heat N₂

$$m_{t} C_{p} \frac{dT}{dt} = S_{0}(1-A) - \varepsilon \sigma T^{4} + L \frac{dm}{dt} + k \frac{dT}{dz}$$

- L = 250,000 J/kg (vapor - β -phase transition)

Ice covered (Mass balance)

ENERGY BALANCE

Bare substrate

Hansen & Paige, 1996

Vapor Pressure Equilibrium

• Antoine equation relates surface vapor pressure to bulk temperature of surface ice

	N ₂ Frost Temperature	N ₂ Surface Pressure
For N ₂ @ T= 63-126° K	50° K	4.1 mbar
	45° K	650 µbar
	42° K	166 µbar
A = 3.7362	41° K	100 µbar
B = 264.651 C = -6.788	38° K	18 µbar
	34° K	1 µbar

Triton's Winds

- Active nitrogen geysers photographed by Voyager 2 between -37° and -62° latitude
- Active geysers rise to 8 km, then are sheared laterally
- Winds in mid-southern latitudes from 1 to 3 km altitude move east at 5-15 m/s
- Winds move westward at 8 km at 19 m/s

Ames GCM Features

- Numerically solves hydrodynamic equations governing 3-D gas flow
- Models thermodynamics of gas condensation and sublimation of main constituent gas (CO₂ for Mars) including heat flow into/out of substrate
- Solves radiative transfer equations for the main atmospheric gas
- Calculates solar insolation per grid per time step given rotational, orbital motion
- Provides for input for subsurface thermal profile per grid point
- Allows input of a surface albedo map

Changes to Ames GCM

- Input Triton physical, rotational, and orbital parameters around the time of the Voyager 2 encounter
- Convert vapor pressure equilibrium equations from CO₂ to N₂ (Antoine equation)
- Select appropriate values for N₂ frost emissivity, surface and N₂ frost albedo, substrate thermal inertia, and N₂ mass inventory (Hansen and Paige, 1992)
- Disable CO₂ based radiative transfer code
- Define initial subsurface thermal profile

Simulation Conditions

Physical & Orbital Parameters		N ₂ Constants & Initial Values		Thermal Balance Parameters	
Semi-major axis	30.07 AU	$N_2 R_{gas}$	296.6 J/kg K	N ₂ frost	0.62
Radius	1352 km	N ₂ Cp 1039 J/kg K		albedo	0.62
Surface gravity	0.78 m/s ²	N ₂ ß-ice	250,000 J/kg	N ₂ ice emissivity	1.0
Rotation rate	5.877 day	latent heat			
Sub-solar latitude at solstice	+/- 50.4°	Initial N ₂ surface ice inventory	100 kg/m ²	Substrate albedo	0.8
Sub-solar latitude				Substrate	
at time of simulation $(Ls = 258.5)$	- 48°	Initial surface pressure	10 µbar	thermal inertia	J/m ² K s ^{0.5}

Triton Simulation Window

Triton Simulation Orientation

- Run at Ls = 258 (Southern summer solstice = 270)
- Sub-solar latitude is -48°
- No insolation above +42°

Condensation Flow Simulation

- Start with 100 kg/m² N₂ ice
- Start with initial surface pressure of 10 µbar
- Run for 20 Triton days (117 Earth days)
- Still ice covered at the illuminated pole

Surface Temperature & Pressure

Surface Pressure (microbars)

$$\Delta P_{\text{pole to pole}} = 1.2 \ \mu \text{bar}$$

Surface Temperature (K)

$$\Delta T_{\text{pole to pole}} = 0.07 \text{ K}$$

Surface winds (15 m)

V (North-South) Winds

U (East-West) Winds

U-V Wind Vector Field

Winds at 1 km

V (North-South) Winds

U (East-West) Winds

U-V Wind Vector Field

Winds at 8 km

V (North-South) Winds

U (East-West) Winds

U-V Wind Vector Field

Simulation Results

- Ames GCM running at Triton/Pluto conditions
 - Tens of microbars
 - Temperatures of 35-40 K
 - N2 atmosphere
- Condensation flow winds
 - Order of 1-20 m/s
 - Agrees with Voyager 2 observations

Exposed South Pole Results (Day 21)

- Start with 10 kg/m² N₂ ice
- South pole N₂ ice totally sublimes away

Surface Pressure (µbar) $\Delta P_{\text{pole to pole}} = 1.1 \ \mu \text{bar}$

Surface Temperature (K) $\Delta T_{\text{pole to pole}} = 1.22 \text{ K}$

Exposed South Pole Results (Day 41)

- Surface pressure down to 8 µbar after 40 days
- Runaway condensation

Surface Pressure (μbar) ΔP_{pole to pole} = 0.5 μbar

Surface Temperature (K) $\Delta T_{pole to pole} = 4.75 \text{ K}$

Future Work

- Regulate thermal balance to prevent runaway sublimation/condensation
- Force observed vertical pressure-temperature profile
 - Upper atmosphere heat flux + conduction
 - Newtonian cooling scheme
 - Radiative transfer with CH₄ and CO
- Run longer simulations

Bonus Slides

Winds at 39 km

(North-South) Winds

U (East-West) **Winds**

Triton's Atmospheric Structure

- July 1997 stellar occultation
- T= 95° K @ 300 km (Voyager 2), 50° K @ 50 km altitude
- Surface pressure increase to 19 µbar from 14 µbar at Voyager 1989 encounter

Pluto's Atmospheric Structure

- "Kink" in occultation light curve
 - Haze
 - Temperature gradient
- Pressure doubled between 1988-2002
- Troposphere
 ?

Changes to Ames GCM for Phase 1, Part 2 (N₂/CH₄ Atmosphere)

- Include radiative code for CH₄ assuming an N₂/CH₄ mixing ratio of 0.5% (L. Young, Lellouch)
- Define surface albedo map (E. Young, Stern, Buie)

PRC96-09b · ST Scl OPO · March 7, 1996 · A. Stern (SwRI), M. Buie (Lowell Obs.), NASA, ESA

Atmosphere Comparison

Earth Atmosphere constituents 78% N₂, 21% O₂

Mars Atmosphere constituents 95% CO₂, 3% N₂

Titan Atmosphere constituents 98% N₂, 2% CH₄ Triton Pluto Atmosphere constituents 99+% N₂

Prime	Prime	Prime	Prime
condensate	condensate	condensate	condensate
H ₂ O	CO ₂	CH ₄	N ₂
273	210	95	35-50

Surface Temperature °K

Simulation Grid Size

Triton and Pluto -Twin Kuiper Belt Objects

Triton

Pluto

Radius (km)	1352.6 ± 2.4	1152 ± 32		
Density (g/cm ³)	2.054 ±0.032	2.03 ±0.06		
Surface gravity (m/s ²)	0.78	0.65 ¹	¹ assuming Pluto radius = 1152 km	
Rotation rate (day)	5.877	6.387		
Inclination	129.6° ²	119.6°	² w.r.t. Neptune's	
a (AU)	30.069 (Neptune)	39.482	orbital plane	
e	0.009 (Neptune)	0.2488		
Orbital period (year)	163.72	248.09		

Surface Ice & Atmospheric Composition

		riton		luto	
Surface Composition & Abundance	$ \begin{array}{c} N_2 \\ CH_4 \\ CO \\ CO_2 \end{array} $	(> 99%) (0.05%) (< 0.1%) (< 0.2%)	N ₂ CH ₄ CO	(98%) (1.5%) (0.5%)	
Surface Temperature	38° K		38-55° K		
Surface Pressure	14-19 µbar		7.5-24 µbar		
Atmosphere Scale Height	15 km @ 40K 38 km @ 100K		18 km @ 40K 46 km @ 100K		
Atmosphere CH₄/N₂ Mixing Ratio	0.01% (Estimated)		0.48 +1.26/-0.35% ¹ 0.55 +/-0.11% ² (Measured)		¹ Young et al., 1997 ² Lellouch et al., 2009
Atmosphere CO/N ₂	0.015%		0.075%		
Mixing Ratio	(Estimated)		(Es	stimated)	

Pluto Atmospheric Collapse

 Significant reduction in Pluto's surface pressure between perihelion (29.66 AU) and aphelion (49.31 AU)

Set ε = 1.0, A= 0.66

Event	Date	Distance To Sun (AU)	Pluto Equil. Temperature	N ₂ Surface Pressure
Perihelion	Sept-1989	29.66	38.7° K	28.5 µbar
Triton distance	Sept-1997	30	38.5° K	25 µbar
Now	Oct-2009	31.9	37.4° K	12.3 µbar
New Horizons	July-2015	32.9	36.8° K	8.3 µbar
	Apr-2024	35	35.7° K	3.8 µbar
	Jan-2043	40	33.3° K	0.6 µbar
	Feb-2067	45	31.5° K	0.1 µbar
Aphelion	Feb-2114	49.31	30° K	22 nbar

Pluto

- Second largest "dwarf" planet
- System of three moons
 - Charon (radius = 603 km, distance = 17,536 km)
 - Nix (radius = 23-68 km, distance = 48, 708 km)
 - Hydra (radius = 30-84 km, distance = 64,749 km)
- 3:2 resonance with Neptune
- Discovered by Clyde Tombaugh
- New Horizons to pass within 10,000 km with a relative velocity of 13.8 km/s on July 14, 2015

Pluto Simulation Windows

Thermal Modeling

- Hansen & Paige, 1992 (Triton), 1996 (Pluto)
- Multi-orbit thermal model to constrain physical parameters affecting seasonal N₂ frost condensation and sublimation patterns
- Model condensation and sublimation of N₂
- Model orbital dynamics
- Model multi-layer substrate
- No modeling of atmosphere dynamics

Pluto Thermal Modeling Results

Triton Thermal Modeling Results

