Characteristics of Gamma-ray Loud Blazars in VIPS

Justin Linford, UNM November 5, 2010

> Collaborators: Gregory Taylor (UNM) Roger Romani & Stephen Healey (Stanford) Joseph Helmboldt (NRL) Anthony Readhead, Rodrigo Reeves, & Joseph Richards (Caltech) Garret Cotter (Oxford)

THE UNIVERSITY ON NEW MEXICO

painting by Don Dixon for "Scientific American"

Blazars

AGN with one jet pointed nearly straight at us
High variability
Typically one-sided jet
Apparent superluminal motion in the jet
Two types:

BL Lacs
FSRQs

Koratkar & Blaes 1999

The Tools: Fermi & VLBI

The Fermi Gamma-ray Space Telescope

- Large Area Telescope (LAT)
- Wide-field
- Covers ~20 MeV to 300

GeV

NASA

Paul Boven & NASA

Tasso Tzioumis, ATNF

What others have found: Correlation & Polarization

- Previous studies have reported a link between radio flux density and gamma-ray flux.
 - Kovelev et al. (2009) using MOJAVE sources, Ghirlanda et al. (2010) using the ATCA, and The LAT team (Abdo et al. 2009) using older VLBA data.
- Other experiments have noted the abundance of polarized sources among the LAT sample.
 - Hovatta et al. (2010), using MOJAVE data, reported that the median fractional polarization for LAT sources was higher than for non-LAT sources.
 - They also found that the polarization levels of LAT sources was stronger during the LAT detections than in previous years, but only by a factor of 1.2.

Our Sample

- VIPS: VLBA Imaging and Polarimetry Survey (Helmboldt et al. 2007)
- 1127 sources
- 🔳 5 GHz (6 cm)
- Also have 8.5 GHz (3.5 cm) VLA flux densities for all sources (CLASS, Myers et

al. 2003).

http://www.phys.unm .edu/~gbtaylor/VIPS/

109 LAT-detected sources

- 102 VIPS sources
- 7 MOJAVE sources (15 GHz)
- 41 BL Lacs, 56 FSRQs, 12 RG/other
- 1018 non-LAT VIPS sources
 - 24 BL Lacs, 479 FSRQs, 515 RG/other

Note: 63% of the VIPS BL Lacs are gammaray loud, compared to only about 9% of the VIPS FSRQs

Flux-Flux Correlation Results

BL Lacs • Rho = 0.217 • P = 0.17 No correlation **RG/Other** • Rho = -0.413 • P = 0.16 No correlation **FSRQs** • Rho = 0.318 • P = 0.017 Correlation

LAT fluxes: 100 MeV – 100 GeV

Core Polarization

- LAT sources are more likely to be polarized.
 - LAT: 49/102
 - Non-LAT: 270/1018
- Fractional polarization is slightly less for LAT sources.
 - LAT median: 3.5%
 - Non-LAT median: 4.4%
 - This is different from other studies (e.g. Hovatta et al. 2010)

Stacked histograms Top: LAT Bottom: non-LAT

Core Brightness Temperatures

 LAT core T_Bs tend to be higher than non-LAT. Except BL Lacs.
 Kolmogorov-Smirnov (K-S) tests indicate that the FSRQs are very different, but BL Lacs are similar.

Stacked histograms Top: LAT Bottom: non-LAT

Jet Opening Angle

 Only had opening angle measurements for 30 LAT sources.
 There is evidence that LAT sources have larger opening angles, especially FSROs.

Stacked histograms Top: LAT Bottom: non-LAT

Jet Characteristics

BL Lac Jet Lengths Top: LAT Bottom: non-LAT

Jet bending (ΔPA) and jet brightness temperatures are very similar for LAT and non-LAT sources.

Jet lengths are similar for FSRQs and RG/other.

LAT BL Lacs have longer jets than non-LAT BL Lacs (K-S: 2.1%).

BL Lacs

- Nearly 2/3 of the BL Lacs in VIPS are detected by Fermi.
- The only difference between the LAT and non-LAT populations is the LAT BL Lacs have longer jets.
- Longer jets indicate either higher material velocity or larger orientation angle.
- But a larger orientation angle would result in a smaller Doppler factor, and therefore less γ-ray flux.
- So, the LAT BL Lacs probably have higher material velocities in their jets.

BL Lacs: Variability

BL Lacs are known to be highly variable. It is possible that the γray quiet BL Lacs are in a low γ -ray state. The γ-ray variability may be related to variability in the jet material velocity.

BL Lac light curve Hugh & Margo Aller UMRAO

- LAT FSRQs appear to be very different from the non-LAT FSRQs.
- Only about 9% (50/529) of the VIPS FSRQs are γ-ray loud.
- γ-ray flux correlates with radio flux density for the FSRQs.
- The core brightness temperatures are higher for LAT FSRQs and they appear to have larger opening angles.

- It seems that the LAT FSRQs are extreme sources.
- The γ-ray loud FSRQs can be explained with Doppler boosting, but they require a substantially higher Doppler factor than the γ-ray loud BL Lacs.
- Lister et al. (2009) reported that the median jet speeds for LAT FSRQs were more than a factor of 2 faster than for the LAT BL Lacs.

Constraints on Gamma-ray Emitting Region

- Notice that all of the differences between LAT and non-LAT objects are related to the cores.
- This indicates that the γ-rays originate in or near the central engine.
- Using the nearest 7 objects, we get an upper limit on the size of the γ-ray emitting region of 0.9 pc.

 $H_0 = 71 \text{ km s}^{-1} \text{ Mpc}^{-1}$, $\Lambda \text{CDM cosmology}$

Conclusions

- BL Lacs are probably all producing gammarays, but we don't detect some because of low Doppler factors and/or variability.
- Gamma-ray loud FSRQs are extreme sources with high radio flux densities and high brightness temps.
- Core polarization is a signature of gamma-ray emission.
- The gamma-rays are coming from the base of the jets.

Backup slides

No Redshift Correlations

Radio Flux Density

Gamma-ray Flux

BL Lacs: rho = 0.07, P=78% FSRQs: rho = -0.04, P=74% BL Lacs: rho = -0.3, P=21% FSRQs: rho = 0.1, P=45% γ -ray flux is in units of 10⁻⁹ ph cm⁻² s⁻¹

Correlation in Other Studies

- The MOJAVE sample is somewhat smaller than the VIPS sample and has a higher cut-off. AT20G is larger than VIPS, but is dominated by bright sources.
- Our large sample, with its lower radio flux density cut-off, shows that the correlation does NOT hold for dimmer sources.
- Why do others see a correlation?
 - The other studies are dominated by bright (S $_{v}$ > 500 mJy) FSRQs.
 - We can reproduce the correlation seen by others if we use the brightest 36 objects in our sample.

Radio Galaxies/Others

- The major difference between the LAT and non-LAT RGs is that 67% of the LAT RGs have polarization in their cores, compared to only about 20% for the non-LAT RGs/Others.
- Note: we used the optical classification system from CGRaBS (Healey et al. 2008). There is controversy about the classification of several of the objects we call RGs.

Compact Symmetric Objects

- Stawarz et al. (2008) predicted there should be many CSOs among LAT detections due to inverse Compton scattering of ultrarelativistic electrons in their lobes.
- However, there are no compact symmetric object candidates among the LAT sources in our sample or any other survey, to date.

