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Dark Matter is predicted from
cosmological mogels

Dark matter accounts for 23% of matter in the universe (dark en
2%, baryonic matter only 5%)

Various types of weakly interacting massive particles (WIMPs) have
been proposed as the dark matter candidate

Since WIMPs weakly interact with regular matter, if they have a large
enough cross section they could be detected by scattering experiments

If WIMPs have small enough mass, they could be produced in
accelerator experiments (e.g. Large Hadron Collider)

WIMPs of mass ~100 GeV would solve problems in particle physics,
and also account for the dark matter of cosmological models (the “WIMP
miracle”).

Could WIMPs have accumulated in the Sun, and would
they have observable effects on solar structure?
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WIMPs arriving at Earth from the Galactic halo can be

directly detected by scattering from nuﬁons
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Experiments detect WIMP elastic scattering events by heat
(phonons), light (scintillation), or ionization (cg
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Locations of Dark Matter detection
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The scattering experiments are located deep underground
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and heavily shielded to reduce cosmi
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Experiments constrain upper limits on WIMP spin-
dependent cross sections
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WIMPs of 5-10 GeV are about the right
mass to fill the inner ~10% of the Sun

WIMPs from the Galactic
halo are captured as they
scatter within the Sun

If WIMP mass is too small
(<5 GeV), WIMPs can pick
up energy from the core and
gradually evaporate from the
Sun

With increasing mass,
WIMPS orbit within a
smaller volume in the center
of the Sun
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We explored solar models with WIMP masses low
enough and cross sections high enough to influence

solar stru%
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WIMPs are included in solar model by
modifying the opacitg

1/ x total — 1/ Kiad+cond T 1/ Kwimp

ar 3 Kk, L

o

dM  4ac T 167"

K=opacity (cm?4/g)

WIMP energy transport is essentially treated as a heat
conduction process

WIMPs orbiting through the center of the Sun and
weakly interacting with protons transport energy from
the inner to outer core

WIMP-WIMP annihilation assumed negligible
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Solar oscillations help us see
‘inside’ the Sun to test our models

Discovered in 1960

Interpreted as acoustic
(sound) oscillations in
1970

Over 100,000 different
modes observed

Modes are initiated by
turbulence in the Sun’s
convective layer
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Velocities at surface of Sun are measured
with spectra to detect oscillations
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Angular dependence of modes are categorized by
spherical harmonic indices
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The lowest degree acoustic modes (and the gravity modes)
are sensitive to solar center conditions

Mode Amplitude

Center
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Sound speed profile inferred from solar oscillations
does not match models using latest element
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abundances (“The solar abundance pmg

2005 element
abundances

1.2% heavy
elements
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elements
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WIMP energy transport produces a cooler
isothermal core
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Comparisons with inferred sound speed
appear to rule out 5-10 GeV WIMP masses
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Small frequency separations rule out 5 GeV

and possibly even 10 GeV WIMP masses
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Models calibrated including low-mass WIMPs
affect predicted gravity modes, neutrino flux

—

Standard model 10 GeV 5 GeV
AGS05 abund. WIMPs WIMPs

8B flux (SNUSs) 6.32 2.96 1.18
/=2 g-mode (uHz) 256 2606 288
He .y sone 0.2273 0.2274 0.2227

Rermes (Rey) 07294 07275  0.7220
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Conclusions

=

Helioseismology can complement detection experiments to rule out
some parameter space for Dark Matter (WIMP) candidate masses
and interaction cross sections.

In particular, helioseismology appears to rule out WIMPs with
masses of <10 GeV, and spin-dependent interaction cross sections
of greater than ~10-3% cm?. [exact #s TBD]

There is a lot of WIMP parameter space that is not ruled out by
helioseismology. Detection of solar g-modes would place stronger
constraints.

WIMPs also lower the expected solar neutrino output, and may be
constrained by current and future neutrino detection experiments

Including dark matter appears to worsen agreement with
helioseismology for either the old or new element abundances, and
does not offer a solution to the solar abundance problem.

WIMPs, if present in stars, may have a much larger effect at later
stages of stellar evolution.
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Direct and indirect detection experiments place limits on
spin-dependent WIMP mass and interaction cross

sections

108

PICASSO p limits \ \;’ KIMS _—
“\\ ~. J— ey
-L_,__ = ——
10'37 Xenon 10 n limits
\DMTPC p reach 7%, I:‘
10°% Ty
‘EJ ' by D8 Tevatron exclusion
%)
~— 4 -0
n10
%u:
1041
2 .
107 DBLHCreach . eeccemeaeeme
108
10—44 1 1 IllllII L 1 ]Illlll 1 1 llIIlII Il
1 10 102 10°
m, (GeV)

Goodman et al.
11/4/1v

2010, http://arxiv.org/abs/1008.1783

24 7 Los Alamos



The solar abundance problem

The Asplund et al. 2005 (AGS05) solar abundance determinatid;
revises downward the mass fraction of elements heavier than H and He
(Z), particularly oxygen, carbon, and nitrogen.

For the older (e.g. Grevesse & Sauval 1998) abundances, Z/X =
0.023, and Z ~0.018. For the new abundances, Z/X = 0.0165, and Z
~0.0122.

Models evolved with the new abundances give worse agreement with
helioseismic constraints
1.4% discrepancy in sound speed
too-shallow convection zone
too-low surface helium abundance

How can this discrepancy be resolved?
Should we adopt the new abundances?
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Abundances of all elements are decreased from
previous Grevesse & Sauval (1998) determination

Oxygen 48% decrease 8.6610.05 (cf GS98 8.83+0.06)
Carbon 35% decrease 8.39 + 0.05 (cf GS98 8.52+0.06)
Nitrogen 27.5% decrease  7.78+0.06 (cf GS98 7.92+0.06)
Neon 74% decrease 7.84 + 0.06 (cf GS98 8.08 + 0.06)
Argon 66% decrease 6.18 + 0.08 (cf GS98 6.40 + 0.06)

Na to Ca: lower by 0.05 to 0.1 dex (12 to 25%); smaller impact since
basis is atomic transitions rather than molecular transitions. Only 1D
NLTE corrections applied so far, so could change.

Fe: 7.45+£0.05 (¢fGS98 7.50 £ 0.05) 12% decrease

Revised mass fraction of ‘metals’ at Sun’s surface (Z) is
now only 0.0122 (instead of 0.018)
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What did we learn from solar modelin

g?>
The center is hot and dense

~27 million °F (15.6 million K) g g rominence
150-160 times more dense than water

Convection occurs in the outer
layers

Sun will run out of fuel in about 7.5
billion years

Sun is growing in size and
luminosity; it started at 70% current
luminosity, and 86% current radius

Sky & Telescope | February 2001

Sky & Telescope | February 2001
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Helium abundance, initial Z, Y, and mixing length (o) are
adjusted to calibrate L, R, and Z/X at present solar aq‘e

R N <

Ysurface
R czb (Rsun)
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Grevesse & Noels Asplund, Grevesse & Sauval

1993 Mixture 2005 Mixture
0.2703 0.2570
0.0197 0.0135
1.7698 1.9948
0.2418 0.2273
0.7133 0.7306

Helioseismic
inference

(Basu & Antia 2004)
0.248 + 0.003
0.713 £ 0.001
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