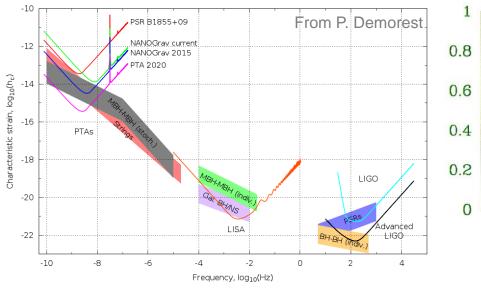
Clocks around the Rock

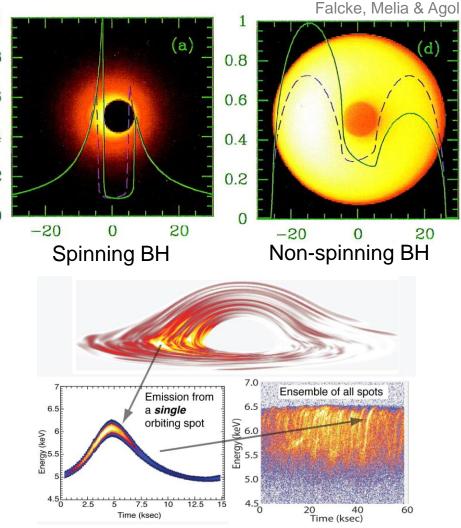
The search for pulsars around the SgrA* black hole

Dale A. Frail National Radio Astronomy Observatory

Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

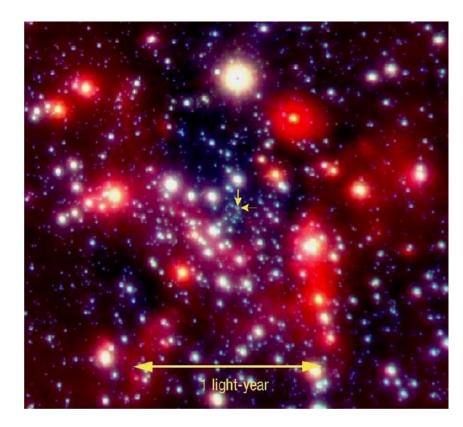

Talk outline

- Motivation for searching for pulsars at the galactic center
- Challenges at the galactic center and how to overcome them
- A high frequency pulsar search toward the GC with GBT
- Future prospects


Collaborators include Andy Harris (Maryland), Nissim Kanekar (NCRA), Jean-Pierre Macquart (Curtin) and Scott Ransom (NRAO)

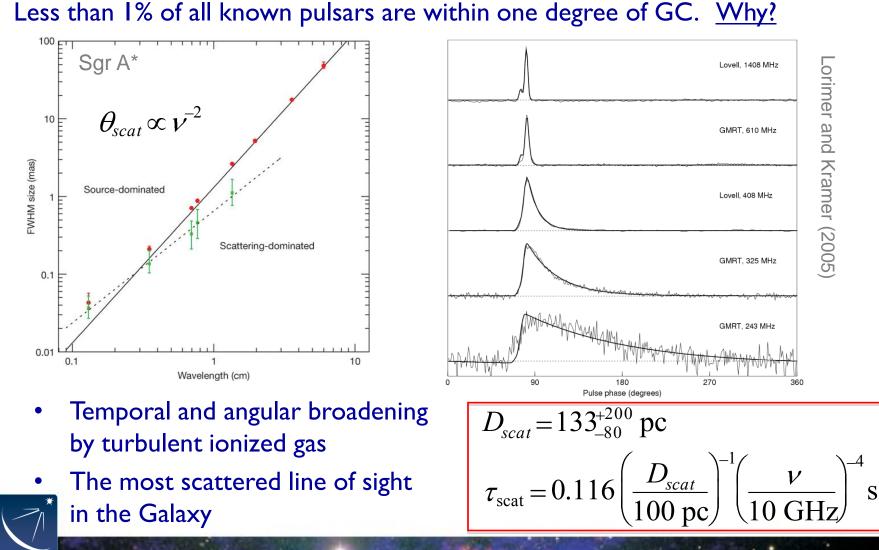
Gravity's Rainbow – the discovery decade

- LISA, LIGO, NanoGrav
 - direct detection of GW
- Event Horizon Telescope
 - VLBI imaging of BH environs
- IXO and GRAVITY at VLTI
 - motion of last stable orbit


Armitage, P. and Reynolds, C. S., 2003

Young massive stars and PSRs in the GC

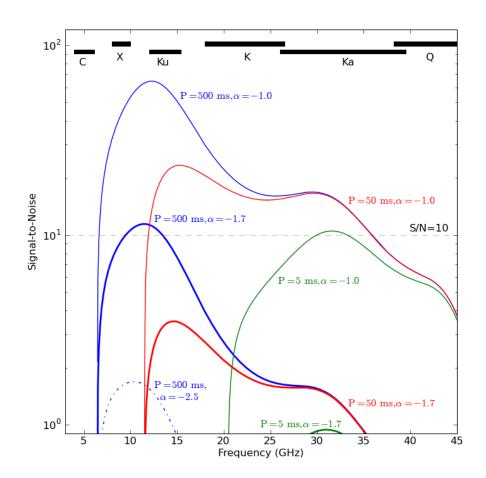
- SgrA* black hole is surrounded by young stars.Age~5 Myrs
- 200-300 early type stars inside the central parsec of the GC
- I0% of <u>all</u> massive stars (>20 M_☉) in the Galaxy are found within the central I00 pc of the GC
 - Other massive star tracers (e.g. masers, OB associations, SNRs, etc) peak toward the inner Galaxy
- Expect significant compact remnants (BH, NS, WD) in the GC
 - Theory predicts 100-1000 PSRs
 - Observational evidence for NS
 from PWN and XRB 20x over-


density

VLT Image by Genzel et al

See review by Genzel, Eisenhauer, & Gillessen (2010)

Challenges to finding pulsars at the GC


NRAC

5

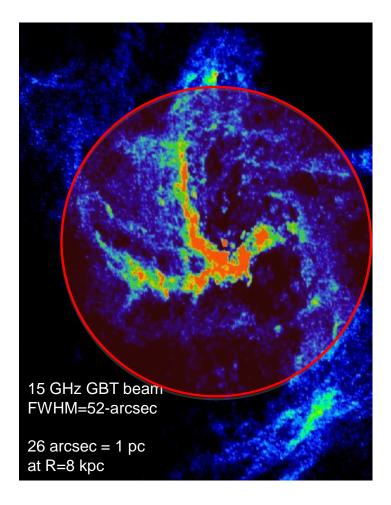
What is the optimal observing frequency?

Effects	Dependence	S/N
PSR	$S_{psr} \alpha v^{-1.7}$	$\mathbf{+}$
ISS	τ _{scat} α ν ⁻⁴	1
GC Background	$T_b \alpha v^{-2.7}$	^
Receiver + Sky	T _r αν ^a (a>0)	$\mathbf{+}$

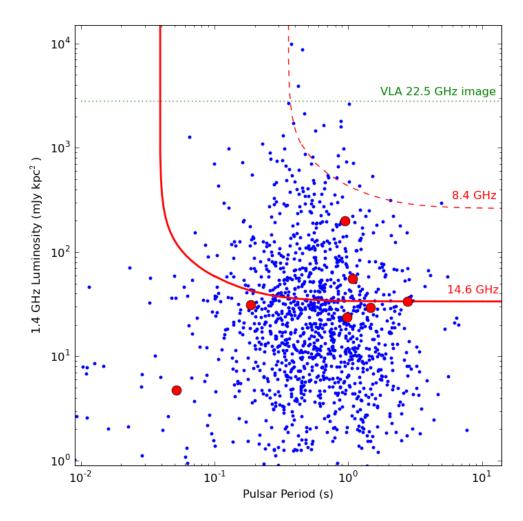
- Normal PSRs (~500 ms)
 - 10-20 GHz. Very feasible
- Young or recycled PSRs (~50 ms)
 12-20 GHz. Hard.
- Millisecond PSRs (~5 ms)
 - 30-35 GHz. Needs SKA.

GBT Experiment and Results

- Ku-band receiver (14.6 GHz)
- Pulsar Spigot (0.8 GHz)
- 50" GBT beam at 14.6 GHz is 1 pc radius at GC
- Bottom line: Deep search (10σ, 10 µJy) but no convincing candidates.
- Was our experiment sensitive enough to detect pulsars at the GC?



GBT Experiment and Results


- Ku-band receiver (14.6 GHz)
- Pulsar Spigot (0.8 GHz)
- 50" GBT beam at 14.6 GHz is 1 pc radius at GC
- Bottom line: Deep search (10σ, 10 µJy) but no convincing candidates.
- Was our experiment sensitive enough to detect pulsars at the GC?

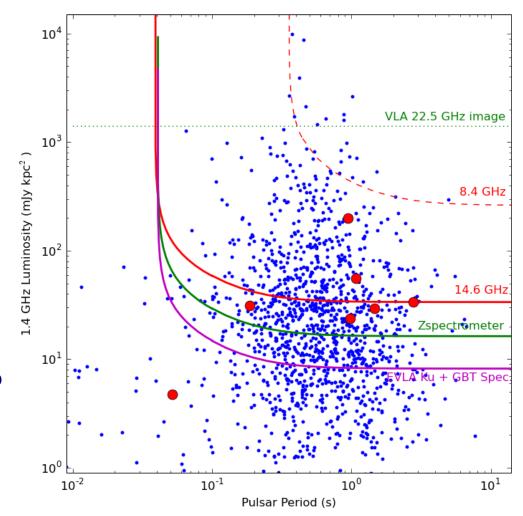
Fraction of Pulsar Population

- First experiment capable of detecting a significant fraction of population of normal pulsars (15%)
 - a more careful analysis=5%
- The null result implies an upper limit of 90 PSRs within Ipc radius of SgrA*
- Future GBT experiments can push into the bulk of the PSR population

Future GBT Experiments. Step 2

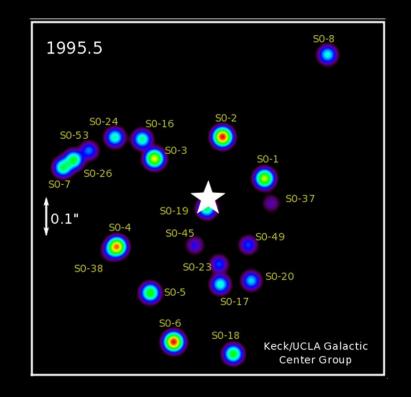
- Use Zspectrometer as backend
- Analog autocorrelation spectrometer designed for molecular line searches for high redshift galaxies
- Currently configured for Ka band (26-39.5 GHz)
- Reconfigure to Ku band (12-15.4 GHz). Gives 3.4 GHz BW.
- Tested dump rates of 5.7 using hardware flight spares from SOFIA CASIMIR experiment
- Funded. Spring 2011

Future GBT Experiments. Step 3


- New wide-band digital backend
- Joint CASPER (Berkeley) and NRAO (GB) ATI grant
- Uses ROACH-II FPGA boards
- I.25 GHz x 8 spectrometers
- Basic mode for PSR/GC search available January 2012
- Replace existing Ku receiver with new EVLA Ku design
 - larger BW (12-18 GHz)
 - I.5 to 2X better Trec
- Several groups requesting funding for EVLA Ku or more

Future GBT Experimental Capabilities

- Small increases in sensitivity result in large increase in fraction of population detectable
- 2-3 times increase
- Ultimately limited by GBT receivers.
 - or X + Ku hybrid
- Experiment pushes us into the bulk of the PSR population



Summary

- The GBT has carried out a deep high-frequency search for pulsars within the central parsec of SgrA*
- No convincing candidates were detected
 - 10σ detection threshold of 10μ Jy at 15 GHz
- This survey should have been capable of detecting a significant fraction of pulsars (~5%) around SgrA*
- Either (a) turbulence at the GC has been underestimated, or
 (b) the number of PSRs at the GC has been overestimated
- GBT has the ability to detect and study pulsars at the GC for only a modest investment

We dance round in a ring and suppose, But the Secret sits in the middle and knows.

