Rapid radio variability of X-ray binary jets and neutron star jet polarization

Eli Pattie (Texas Tech University, final year graduate student) Tom Maccarone (Texas Tech University) Alex Tetarenko (University of Lethbridge)

X-ray Binaries (XRBs)

• Black hole (BH) or neutron star (NS) accreting matter from a companion

- Accretion disk: optical/infrared
- Inner accretion disk: X-rays
- Jets: Sub-mm to radio
 - mildly or highly relativistic

X-ray Binary Jets

- Many open questions regarding their formation and launching by magnetic fields, and how they are fed material
- Neutron star jets are less understood than black hole jets

X-ray Binary Jets

- Many open questions regarding their formation and launching by magnetic fields, and how they are fed material
- Neutron star jets are less understood than black hole jets
 - Compact, steady jets
 - Blandford-Königl (1979)
 - Internal shocks (Malzac 2014)
 - Low $\dot{m} (\lesssim 0.1 L_{Edd})$

X-ray Binary Jets

- Many open questions regarding their formation and launching by magnetic fields, and how they are fed material
- Neutron star jets are less understood than black hole jets
 - Compact, steady jets
 - Blandford-Königl (1979)
 - Internal shocks (Malzac 2014)
 - Low $\dot{m} (\lesssim 0.1 L_{Edd})$

- Discrete ejecta jets
 - Adiabatically expanding plasmoids
 - Occur at transition to higher \dot{m}

Radio power spectra

- Power spectra quantify variability present
- Compare variability of jet structures
- Compare variability of BH to NS accretor jets

Mostly archival data from VLA & ALMA

Very high accretion rate jets

- At or above Eddington accretion rates
- Unclear jet structure
 - Persistent compact jets + discrete ejecta?
 - Unusually steep radio spectral indices for persistent radio emission

First NSXB jet polarization detections

First NSXB jet polarization detections

Flux density (mJy)

Flux density (mJy) Pol Deg Spectral index

Flux density (mJy) - Pol Deg - Spectral index - Pol Ang

GX 5-1: variable radio polarization

PD = 1.4%

GX 5-1: variable radio polarization

PD = 1.4%

Radio PA aligned with X-ray PA

8 days later

Summary

- Jet variability
 - Rapid variability in radio/mm of X-ray binary jets can indicate jet structure
 - Neutron star jets are just as variable as black hole jets
 - Very high accretion rate jets appear to have low \dot{m} compact jet variability
- Polarization
 - First detections of NSXB jet polarization in radio
 - Polarization \rightarrow jet position angle
 - Evidence of jet polarization variability
- Plenty of avenues for future research

Summary

- Jet variability
 - Rapid variability in radio/mm of X-ray binary jets can indicate jet structure
 - Neutron star jets are just as variable as black hole jets
 - Very high accretion rate jets appear to have low \dot{m} compact jet variability
- Polarization
 - First detections of NSXB jet polarization in radio
 - Polarization \rightarrow jet position angle
 - Evidence of jet polarization variability
- Plenty of avenues for <u>future research</u>

Summary

- Jet variability
 - Rapid variability in radio/mm of X-ray binary jets can indicate jet structure
 - Neutron star jets are just as variable as black hole jets
 - Very high accretion rate jets appear to have low \dot{m} compact jet variability
- Polarization
 - First detections of NSXB jet polarization in radio
 - Polarization \rightarrow jet position angle
 - Evidence of jet polarization variability

The Fundamental Plane: (L_R/L_X)

Jet production mechanisms

- Black holes: Blandford-Znajek: Magnetic fields are dragged and twisted by BH spin
 - Depends on magnetic field ($\propto B^2$) and spin ($\propto \alpha^2$)
- Neutron stars: produce own magnetic fields and rotate
 - Depends on magnetic field (10⁸⁻¹³ G) and spin (~10ms to 100s sec.) of NS
- Blandford-Payne: Accretion disk rotation and magnetic field
 - Depends on B_z and B_ϕ of disk, rotation $\Omega,$ and jet launch radius R_j

