

DETERMINE PLANE-OF-SKY MAGNETIC FIELD DIRECTION VIA MOLECULAR LINE POLARIZATION

Tao-Chung Ching¹, Jansky Fellow

Zhi-Yun Li², Qizhou Zhang³, Josep M. Girart⁴, Chin-Fei Lee⁵, Shih-Ping Lai⁶, Ramprasad Rao³, Emmanuel Momjian¹
I. National Radio Astronomy Observatory, USA 2. University of Virginia, USA 3. Harvard-Smithsonian Center for Astrophysics, USA
4. Institut de Ciencies de l'Espai, CSIC-IEEC, Spain 5. ASIAA, Taiwan 6. National Tsing-Hua University, Taiwan

Braking B⁵ Field in Star Formation

- Magnetic field is frozen in ideal MHD
- Magnetic flux must be reduced to enable star formation
- Magnetic braking is needed to remove angular momentum

Crutcher 2006

Galactic Magnetic Field Surveys

What's Plane-of-sky B Field Direction?

Figure courtesy: Tamara

Direction (vector)

How to Determine B Field Direction?

ANALYSIS OF ZEEMAN EFFECT DATA IN RADIO ASTRONOMY

R. J. SAULT, N. E. B. KILLEEN, J. ZMUIDZINAS, AND R. LOUSHIN Astronomy Department, University of Illinois Received 1989 October 9; accepted 1990 March 7

ABSTRACT

We discuss the analysis of Zeeman effect data in radio astronomy and in particular, extend previous techniques to include the case of low signal-to-noise ratios. We consider three statistical techniques for estimating the line-of-sight magnetic field: maximum likelihood, least-squares, and Wiener filters. For high signal-to-noise ratios, all three estimators are essentially unbiased. In the poor to moderate signal-to-noise ratio regime, we conclude that all three estimators are biased; the maximum likelihood technique yields results that are, in general, substantially less biased than least-squares and Wiener filters. However, it is possible to "debias" the least-squares results and obtain estimates that are as good as maximum likelihood under a restricted set of conditions.

"If the splitting was large enough that all three Zeeman components were well-separated, then the total magnetic field strength could be obtained from the measured separation of the split components."

LINEAR POLARIZATION OF INTERSTELLAR RADIO-FREQUENCY ABSORPTION LINES AND MAGNETIC FIELD DIRECTION

NIKOLAOS D. KYLAFIS Institute for Advanced Study, Princeton Received 1983 February 14; accepted 1983 May 5

ABSTRACT

It is predicted that interstellar radio-frequency absorption lines in the direction of H II regions, supernova remnants, and hot cores of molecular clouds are linearly polarized. The amount of linear polarization may be as large as several percent if (1) the optical depth is moderate and (2) the number of extrema of the velocity component along the line of sight through the absorbing medium is small. The polarization is caused by the linear dichroism of the interstellar medium, which in turn arises from the non-LTE population of the magnetic sublevels. Analytic expressions are presented for the amount of polarization expected in radio-frequency lines from absorbing material undergoing one-dimensional, two-dimensional axisymmetric, and three-dimensional isotropic collapse. A relation is given between the polarization vector and the magnetic field direction. This relation applies when the Zeeman splitting exceeds both the collisional frequency and the radiative transition rate.

"observations of linear polarization in radio-frequency absorption lines ... are guaranteed to be informative."

Spectral-line Polarization: Goldreich-Kylafis Effect

Goldreich-Kylafis Effect Observations

SMA Observations in NGC1333 IRAS4A

- \blacksquare 1.2 M_{\odot} Class 0 protostellar binary 4A1 & 4A2 with prominent outflows
- A text-book example of magnetic dominated star formation

ALMA CO 2-1 Polarization Observations

ALMA CO 2-1 Polarization Observations

Xe and Xv

- In theory, Xe ~ 10⁻⁷-10⁻⁸, Xv ~ 10⁻²-10⁻³
- In observation, Xe ~ 10⁻⁶-10⁻⁸ (Caselli et al. 1998), Xv < 10⁻¹ at 100 au (Yen et al. 2018)

Figure 16.3 Fractional ionization in a dark cloud, estimated using Eq. (16.25), with the grain recombination rate coefficients set to $k_{16.20} = k_{16.22} = 10^{-14} \text{ cm}^3 \text{ s}^{-1}$ (see Fig. 14.6). The dashed line is a simple power-law approximation $x_e \approx 1 \times 10^{-5} (n_{\rm H}/\,{\rm cm}^{-3})^{-1/2}$.

$$(\mathbf{v}_i - \mathbf{v}_n) = -\frac{(m_i + m_m)}{m_i m_n} \frac{1}{n_i n_n \langle \sigma v \rangle} \nabla \frac{B^2}{8\pi} \quad . \tag{41.55}$$

Suppose that a clump has characteristic magnetic field strength B and characteristic dimension L (see Figure 41.1). The time scale for the magnetic field to slip out of the clump is

$$\tau_{\rm slip} = \frac{L/2}{|\mathbf{v}_i - \mathbf{v}_n|} = \frac{8\pi (L/2)^2}{B^2} n_i n_n \langle \sigma v \rangle \frac{m_i m_n}{(m_n + m_i)} \quad . \tag{41.56}$$

where we have approximated $\nabla B^2 \approx B^2/(L/2)$. To evaluate this, suppose that (1) $L \approx 1.23 n_4^{-0.81} \,\mathrm{pc}$ (Eq. 32.12), (2) the magnetic field strength is given by the observed relation $B \approx 49 n_4^{0.65} \,\mu\mathrm{G}$ for the median field strength [Eq. (32.17)], and (3) the fractional ionization $n_i/n_\mathrm{H} \approx 1 \times 10^{-7} n_4^{-1/2}$ (see Fig. 16.3). Then,

$$\tau_{\rm slip} \approx 7 \times 10^7 n_4^{-1.42} \,{\rm yr}$$
 (41.57)

BVector Map

Image credit: NRAO

					C	1	1000	ACT OF L	100		1000	
Tracing Magneti Nucleus	c Field in Molecula	[.] Jet-Drivi	ng Galactic	201	8.1.00695.S		0 %					
ABSTRACT							-0.5 %		Sec. 1			-
The galactic nucleus, NGC3256 S is known to drive collimated, massive and high velocity (likely >1000 km/s) molecular jets. The jet launching, accelerating, and collimation mechanisms are by far mysterious. It has been hypothesized that these mechanisms are similar to those which are driving the molecular jets emanated from protostars. As an initial attempt to test this hypothesize, we request full polarization observations towards NGC3256S to detect the linear polarization of dust continuum and CO 3-2. This approach has been routinely applied to the studies of magnetic field around protostellar jets, however, is only now becoming possible to be applied to extragalactic sources, taking advantage of the unprecedented sensitivity of ALMA. The main limitation of such type of studies remains thermal noise. In spite the risk, the reward may be very high in the case that the anticipated polarization singal is indeed detected.						on Percentage	-1 % -2 % -	1D			CO 2-1 13CO 2-1 C17O 2-1 C18O 2-1 HCO+ 3-2 H13CO+ 3-2	
Hauyu Baobab Liu Galaxies and						zati					HCN 3-2	
PI NAME:	,	SCI	ENCE CATEGORY:	Galac	tic Nuclei	ariz					H13CN 3-2	
12M TIME:	6.3 h ACA TIME: 0	0 h ESTIMA MO	DE TIME (12-M):	RD	6.3 h	ö					CS 5-4	
CO-PI NAME(S): (Large & VLBI Proposals only)				P		<u> </u>	-3 % -			and the second s	SiO 5-4	
CO-INVESTIGATOR NAME(S):	Tao-Chung Ching; Sergio Mart	n								· · · · · · · · · · · · · · · · · · ·		
DUPLICATE OBSERVATION JUSTIFICATION:							-4 %					······
REPRESENTATIVE SCIENCE GOALS (UP TO FIRST 30)							0.1		1	10	100	1000
SCIENCE GOAL	POSITION	BAND	ANG.RES.(") LA	(") ACA	NON-STANDARI MODE					TAU		
Full polarization for NGC 3256 S	ICRS 10:27:51.2200, -43:54:19	.200 7	1.000 5.	000 N	Y							
Total # Science Goals : 1												
SCHEDULING TIME CONSTRAINTS NONE TIME ESTIMATES OVERRIDDEN ? No												

ALMA proposal: Hauyu Baobab Liu; Tao-Chung Ching; Sergio Martin

Image credit: NRAO

Goldreich-Kyläfis Effect Calculations

.....

1000

Correlation of Ampere Law in HI data?

No V_{CO}, drift velocity = 1 m/s

check sqrt(n_{H2}) dependance in B

