VELOCITY GRADIENTS OF INTERMEDIATE DENSITY AMMONIA GAS IN THE TAURUS MOLECULAR CLOUD

Presented by Lucy Steffes^{1,2}

Collaborators: Yancy Shirley¹, Brian Svoboda³

2024 New Mexico Symposium

The Taurus Molecular Cloud

- Nearby star-forming region
 - 140 pc
 - Quiescent laboratory for astrochemistry and star formation
- GAS Team mapped Taurus at the (1, 1) and (2, 2) inversion transitions of ammonia (NH_3)
 - 23.69 GHz & 23.72 GHz (Kukolich, 1967)
 - Spatial resolution: 33"
 - Spectral resolution: 0.08 km/s \rightarrow 0.02 km/s

Ammonia Inversion Transitions

- Nitrogen atom tunnels through classically forbidden plane of hydrogen atoms
 - Energy of transition dependent on rotational state of ammonia
- Contain 18 and 24 hyperfine transitions clumped into 5 and 7 groups respectively

The Problem

- Main central peak is clearly identifiable
- What are the remaining peaks?
 - Hyperfine transitions
 - Frequency spacing known
 - Other velocity components
 - Noise
- How do we conduct kinematics analysis?

The Solution: Bayesian Analysis

• Use Ammonia (1,1) and (2,2) inversion spectra as prior

$$P(\theta|D) = P(\theta) \times \frac{P(D|\theta)}{P(D)}$$

Prior

Posterior

 Forms posterior distributions for velocity, excitation temperature, column density, dispersion, etc.

Maximum Likelihood Velocity

Herschel Gould Belt Survey (Ladjelate+20)

Differential Geometry

Per **paralie** lutaradirandie (ktn(km² sp²−b/t^{−1})

Gradients in Subregions

Gradient as a Function of Distance

Comparing to Literature

- Perseus is at a distance twice as far as Taurus
 - Same beam size
 - Blurs out some features
- Dust filaments trace both high density and diffuse environments
 - Ammonia traces intermediate and high-density gas
 - Dust is sensitive to wider range of densities and structures
 - Using Bayesian statistics, now able to probe more diffuse ammonia gas
 - Next: Classify dust spines into core containing and feeder spines

Velocity gradients for Perseus molecular cloud (Chen+20)

Conclusions

- Ammonia inversion transitions used to map intermediate and high-density gas in Taurus
 - Complex hyperfine spectral structure and velocity structure of cloud encourage use of Bayesian analysis
- Use differential geometry to measure gradients of gas in parallel and perpendicular directions to spines
 - Velocity gradients larger further from spines in both directions
- Next: Use simple vector models to replicate results

