

What is a Dynamo?

- The conversion of mechanical energy to electromagnetic energy
- The most popular dynamo: automobile alternator
 - Mechanically driven rotor generates AC current within stator (Faraday's Law)
- A bigger example: Earth
 - Large spatial B-field generated from complex fluid motions within the planet's core
- Galactic Accretion Disk Dynamos?
 - Plasma disk around SMBH
 - Keplerian flow profile $\Omega(r) \propto r^{-3/2}$
 - i.e. differential rotation
 - How can B-fields be generated and amplified in this MHD scenario?

Our Galactic Dynamo Model

- A conversion of mechanical energy to magnetic energy through the stretching and twisting of B-field lines.
- "Star-disk" collision
- $\alpha \omega$ Dynamo process
 - ω-effect: amplification of a seed magnetic field through differential rotation
 - α-effect: conversion of the toroidal field to the poloidal field
 - A positive feedback loop
- $\omega_{gain} = B_{\phi}/B_{r,seed}$

The Experiment

- Coaxial Drums
 - Establish a Taylor-Couette (TC) flow
 - $R_{in} = \overline{15.25 \ cm} = 6 \ in / R_{out} = 2 \cdot R_{in} / L_{TC} = 2 \cdot R_{in}$
 - $f_{in} = [0.70] Hz = [0.4200] RPM / f_{out} = 1/4 \cdot f_{in}$
- Helmholtz Coils
 - Dipole or Quadrupole B-field configuration
 - Can toggle B-field polarity and strength

- Jet Pump Assembly
 - Piston powered by linear air motor
 - 2 or 4 plumes generated within TC annulus
 - Plume velocity and frequency easily adjusted
- DAQ System and Sensors
 - LabView control and DAQ Stationary & Rotating Boards sampling at 2000 Hz.
 - A multitude of sensors...

• The Drums

- Each drum driven by 100 HP electric motor, controlled via Variable Frequency Drives (VFDs)
- Scientific strain-gauge torque meters mounted on each motor-shaft
- Tungsten-carbide mechanical seal separates hot oil supply and sodium

• The Taylor-Couette annulus

- Responsible for establishing the ω -effect
- 15.25 cm (6 in.) wide / 30.5 cm (12 in.) long
- We can quantify the TC flow with Reynolds numbers
 - If $f_{in} = 70$ Hz and $f_{out} = 17.5$ Hz, $Re_{\omega} = \frac{2\pi (f_{in} - f_{out})(R_{out} - R_{in})^2}{\nu} = 1.09 \times 10^7$ $Rm_{\omega} = \frac{2\pi (f_{in} - f_{out})(R_{out} - R_{in})^2}{\eta} = 102$
 - For liquid sodium at ~110°C (230°F), $v \approx 7 \times 10^{-3} \ cm^2/s$ and $\eta \approx 750 \ cm^2/s$

(Anti)-Helmholtz Coils

- The Coils
 - 'Helmholtz' = Dipole B-field
 - 'Anti-Helmholtz' = Quadrupole B-field
 - Provides a 'seed' field to the TC flow
 - Can toggle B-field topology, polarity, and strength
 - Produces quadrupole (radial in/out) or dipole (±ẑ) seed B-field
 - Four 12 VDC batteries in parallel (1000 Ah)
 - Four current settings using resistors (0.5 Ω) in parallel
 - Option 1: ~23 A
 - Option 2: ~42 A
 - Option 3: ~70 A
 - Option 4: ~210 A ('direct short')
 - New coils made with Kapton-coated #2 AWG mag wire
 - 20 turns each in a 2×10 layout
 - Combined resistance: $\sim 0.05 \Omega$

Jet Assembly

- Piston powered by linear air motor
 - Driving pressure: 0 200 psi
 - Position (hence velocity) tracked by linear encoder
 - Maximum stroke of ~10 cm (4 in)
 - Relays control the duration and frequency of the piston
 - Recent observation: 40 psi yields $U_{piston} \sim 2.35 \ m/s$ at $f_{jet} \sim 5.5$ Hz for 4 seconds
- Sodium Plumes
 - 2 or 4 plumes can be generated (requires minimal mechanical alteration)
 - Liquid sodium is incompressible
 - $U_{piston} \sim U_{jet}$ (for 4 plumes)
 - Complex 3D process; can quantify using Re and Rm
 - Plume twisting:

$$Re_{lpha,twist} = rac{L_{TC}(f_{in} + f_{out}) \left(D_{port} + rac{L_{TC}}{2\pi}
ight)}{4\nu}$$
 $Rm_{lpha,twist} = rac{L_{TC}(f_{in} + f_{out}) \left(D_{port} + rac{L_{TC}}{2\pi}
ight)}{4\eta}$

• Plume expansion:

$$Re_{\alpha,expand} = rac{U_{jet}\left(D_{port} + rac{L_{TC}}{2\pi}
ight)}{v}$$
 $Rm_{\alpha,expand} = rac{U_{jet}\left(D_{port} + rac{L_{TC}}{2\pi}
ight)}{\eta}$

- Data Acquisition (DAQ) System
 - A LabView control and data collection program
 - Records data from all sensors at 2000 Hz
 - Two main electronics boards: Stationary and Rotating
 - Stationary: communicates w/ sensors in the rest-frame
 - Rotating: sensors in the rotating-frame rotates at f_{out}
 - Analysis done in MATLAB or Python
- The Sensor Suite
 - Stationary:
 - Tachometer (6), torque (2), shunt (1), air pressure (1), linear encoder (1), oil temp. (4), board voltage inputs (4)
 - Our "Eyes Inside"
 - 2 symmetric airfoil-shaped aluminum housings for electronics boards populated with Hall-Effect sensors (namely the α and ω -probe)
 - Rotating:
 - Hall-Effect sensitive to (B_r, B_ϕ, B_z) (42) (21/probe), sodium temp (4) (2/probe), outside 'skin' temp. (2), liquid pressure (9), 'skin' Hall-Effect (6), board voltage inputs (4)

Technical Aspects

- Sodium (Na)
 - A fairly easily element to work with...
 - Temperature well-maintained at a "low" 110°C (230°F)
 - Auto-combustion of liquid sodium in air occurs when $T_{Na_I} \sim 120$ °C (248°F)
 - Liquid sodium 'freezes' at $T_{Na_1} \sim 100$ °C (212°F)
 - As temperature increases, *Re* increases and *Rm* decreases
 - A good solvent Denatured alcohol
 - For storage Mineral oil and/or Argon
 - For handling Argon

• Centripetal Forces

- Steel safety shield for heating and mechanical failure
- Al alloy 5083-H3 (high tensile strength~300 MPa)
- Outer drum has a 3.2 cm (1.25 in.) thickness
- Expected g-force ~ 375 at R_{out} with $f_{out} = 17.5$ Hz
- 138 kg (305 lbs) of liquid Na with an outward pressure of 827 kPa (120 psi) at $f_{in} = 4 \cdot f_{out} = 70 \text{ Hz}$
- 'Galactic jake brake' for outer cylinder

Property	Sodium (Na)
Melting Point	97.8°C
Boiling Point	883°C
Density	$0.927 \ g/cm^3 \ (l)$
Kinematic Viscosity (ν)	$7 \times 10^{-7} \ m^2/s$ (~110°C)
Magnetic Diffusivity (η)	$0.075 \ m^2/s$ (~110°C)
Electrical Conductivity	$\sim 10^7 \ S/m$ ($\sim 110^{\circ}C$)

Preliminary Results

• Solid Body + Jet (August 2023)

 $f_{in}=f_{out}=10.5$ Hz, $f_{jet}{\sim}5.5$ Hz, $f_{sample}=2000$ Hz $Rm_{\omega}=0$, $Rm_{\alpha,twist}=2.67$, $Rm_{\alpha,expand}=3.92$

Our Experimental Realm

- ω -effect
 - Differential rotation at varied f_{in}/f_{out}
 - Quadrupole seed field (radial in/out)
 - No jet influence
- $\alpha \omega$ dynamo
 - Differential rotation at varied f_{in}/f_{out}
 - Quadrupole seed field (radial in/out)
 - Active jet motor at f_{jet}
- Possibly the MRI
 - Differential rotation at varied f_{in}/f_{out}
 - Dipole seed field $(\pm \hat{z})$
 - Increase strength of seed B-field $(\leq 3000 \text{ G})$
 - No jet influence change port plate with 0 ports

- Government funding through NSF
- Funding from the Department of Energy through Los Alamos National Labs
- Funding from the state of New Mexico through New Mexico Tech
- Private donors
- Stirling Colgate Designer of the experiment
- Howard Beckley Former NMT PhD student who presented the experiment's fluid dynamics
- Jiahe Si Current Principle Investigator and developer of the DAQ system
- Art Colgate Current Project Manager and industrial engineer
- Many former faculty, graduate, and undergraduate students (~30)

For more, visit http://kestrel.nmt.edu/~dynamo/