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Inflexible pipelines

What is wrong with the current approach?

Slow as developers find heuristics

Expensive approach 

Requires lots of human overhead 

The Problem



Inflexible pipelines

Vision: dataset-specific processing, at scale 

Slow as developers find heuristics

Expensive approach

Requires lots of human overhead 

The Vision

Offload heuristic finding to 
computers

Make decisions, don’t follow 
recipes

Data-driven, a path to SRDP

which requires solving automation bottlenecks



The How

How?
Reframe as a path-finding and cost-minimization problem
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Use RL for Path-finding and Cost Minimization
The How
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Random walks to explore the 
parameter space

- computer doing the heuristic search

Simulated annealing constricts 
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- prevents greedy behavior
- resistant to local minima 
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NNs build a model of 
understanding from the sampling

- avoids exhaustive search
- iteratively improves



The objective is the “destination”

- the feedback signal for pathfinding
- defined by the user/observatory

Dataset properties define the 
“location”  

- data-driven specifics

CASA tasks are the “actions” you 
can take to navigate 

- evaluated on performance towards an 
objective

How we use it
The How



Metric to evaluate actions:
- EMD of actual vs theoretical noise
- Runtime

Runtime penalty prevents using the most 
expensive algorithms all the time*

        Created ~5000 sims of varying gains & RFI

Chosen dataset features:
- Mean amplitude
- Time-std
- Freq-std 
- Max amplitude

A simplified scenario in calibration
What we have done

Actions available:
- Average freq & calibrate
- Average time & calibrate
- Avg-Both & calibrate
- Avg-None & calibrate
- Do Nothing (not pictured)

- Flag (not pictured)



1% of sims used for policy training
- 50 sims for 100 RL-iterations 
- >92% accuracy on ~5000 unseen sims 

- solved sequencing and actions

Results from the simplified scenario

Policy applied to 5000 simulations
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Found its way to noise on its own
- no instructions given to do this 

1% of sims used for policy training
- 50 sims for 100 RL-iterations 
- >92% accuracy on ~5000 unseen sims 

- solved sequencing and actions

DT for a human readable policy
- RL found the thresholds, not humans
- tree can be validated by experts

Results from the simplified scenario

Policy applied to 5000 simulations

Decision Tree Classifier

What we have done

Flag → Avg-None → Flag again → Stop



1.  Expand the # of actions available
2. Include multiple / diffuse sources
3. Aiming to learn self-cal process

Expanding from here

Expand Scope of Decision Environment
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Calibrator source catalog is real 
data closest to our current sims

1.  Expand the # of actions available
2. Include multiple / diffuse sources
3. Aiming to learn self-cal process

Instead of thresholds, find rules:
- rules are more generic to transfer 
- same rules for 100 → 100k ints/chans

Test sim-to-real transfer of rules

Expanding from here

Expand Scope of Decision Environment Move to real dataFind scale-invariant rules, not thresholds 

What we are going to do


