

Constraining the Evolution of Protoplanetary Disks in Young Stellar Clusters (Boyden & Eisner 2020, 2022)

Ryan Boyden University of Arizona Advisor: Joshua Eisner

New Mexico Symposium

Massive Stars

Intense UV radiation

Intense UV radiation

Example: ONC

Zoom

Intense UV radiation

Example: ONC

Zoom

• • • • • • •

Intense UV radiation

Example: ONC

Zoom

Zoom

Intense UV radiation

Largest Sample of ALMA-detected gas disks in a clustered SFR

ADS Link

13

Largest Sample of ALMA-detected gas disks in a clustered SFR

ADS Link

Largest Sample of ALMA-detected gas disks in a clustered SFR

ADS Link

Thermochemical Modeling Procedure

- Using the Thermochemical code RAC2D (Du+14), we:
 - Generated a large grid of model disks as a function of
 - Disk dust and gas masses
 - UV/X-ray radiation fields
 - Disk Sizes
 - Viewing Geometry
 - Central Stellar Mass
 - Fitted a large grid of models to ALMA continuum observations + ALMA observations of CO emission, CO absorption, and/or HCO+ emission

Boyden+22

Full Modeling Results

Boyden & Eisner (2022)

Full Modeling Results CO emission

Boyden & Eisner (2022)

Full Modeling Results CO absorption

Consistent with (or greater than) expected ISM values

Higher gas-to-dust ratios in ONC vs. lower-mass SFRs

Compact Disks in the ONC

Compact Disks in the ONC

Reduced CO Depletion in the ONC

Gas-Rich Disks in the ONC

Gas-Rich Disks in the ONC

Takeaways

- 1. Gaseous Circumstellar Disks in the ONC are massive, compact, and gas-rich
- 2. ISM-like gas-to-dust ratios: evidence for reduced CO depletion in ONC disks
- 3. Massive gas disks in the ONC have enough material to form giant, Jupiter-like planets
- 4. Future Work: follow up ALMA/VLA observations in ONC, NGC 1977, & NGC 2024

Boyden+22

Additional Slides

Current Research: *"completing the census of proplyds in NGC 2024 and NGC 1977 with the VLA"*

Current Research: "completing the census of proplyds in NGC 2024 and NGC 1977 with the VLA"

ADS Link

Largest Sample of ALMA-detected gas disks in a clustered SFR

"Constraining the Evolution of Protoplanetary Disks in Clustered SFRs"

- <u>Thesis Goal:</u> constrain the impact of the stellar cluster environment on the <u>molecular gas compositions</u> of protoplanetary disks
 - What are the typical molecular gas masses and sizes of disks in clustered SFRs?
 - What are the gas-to-dust ratios?
 - Are the molecular gas compositions of disks different in clustered vs. lowermass star-forming regions?

Credit: ESA

Treatment of CO absorption

Treatment of CO absorption

CO Absorption Example: "173-236"

*fitting performed on channel maps

Disk Masses & External Photoevaporation

Interpretation 1: Modeled, ALMAdetected gas disks are younger than the average cluster member (Winter+19)

Interpretation 2: External Photoevaporation has recently begun operating in <u>all</u> of the ONC (Qiao+22) Need increased sample of gas detections!

Dynamically Derived Stellar Masses

- Dynamically-derived stellar masses are consistent with spectroscopically-derived stellar masses
- 100% increase in dynamical masses measurement at $M_{star} < 0.2_{\odot}$
- 100% increase in dynamical masses measurement at < 0.2 $_{\odot} < M_{star} < 0.5_{\odot}$

Current Research: "Measuring the Background Temperature of Orion Nebula Cluster Disks"

Current Research: "Measuring the Background Temperature of Orion Nebula Cluster Disks"

