Evaluating the E-Field Parallel Imaging Correlator (EPIC) with the Long Wavelength Array

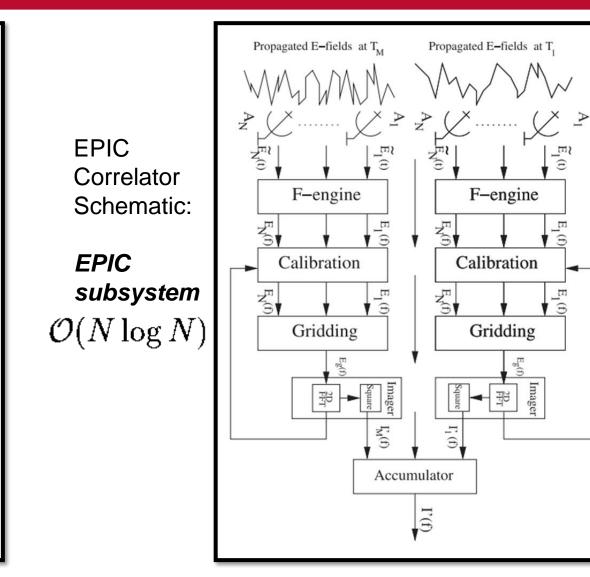
Craig Taylor, G.B. Taylor, Jayce Dowell University of New Mexico Physics and Astronomy 16 February 2023, 38th New Mexico Symposium

Long Wavelength Array (LWA)

- 256 dual-polarization dipole antennas
- Pseudo-randomly arranged array in 100m x 110m area
- Independent beams tunable over frequency range of 10-88 MHz
 - ~16 MHz effective bandwidth per tuning
- Beamformed digital receiver (DRX) outputs
 raw voltage time-series data

LWA station located on the Sevilleta National Wildlife Refuge (LWA-SV)

- The E-Field Parallel Imaging Correlator (EPIC) is a direct imaging correlator for interferometer arrays (Thyagarajan et al. 2017)
- Images formed by convolution of gridding function with electric field distribution at each dipole
- Streaming output currently handled by Bifrost framework for GPU processing


LWA-EPIC

Propagated E-fields at T Propagated E-fields at T AN Standard E₁(t) Ζ Z. **FX-Correlator** F-engine F-engine Schematic: $E_1(f)$ $E_{N(f)}$ E_N(f) X-engine X-engine Orville V_{ab}(f) subsystem $\mathcal{O}(N^2)$ Accumulator <Vab(f)> Calibration v_g(f) Gridding Imager 2D FFT Ē Thyagarajan et al. 2017

 $\tilde{E}_{1}(t)$

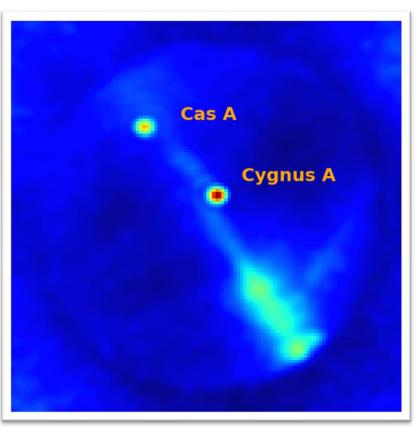
E₁(f)

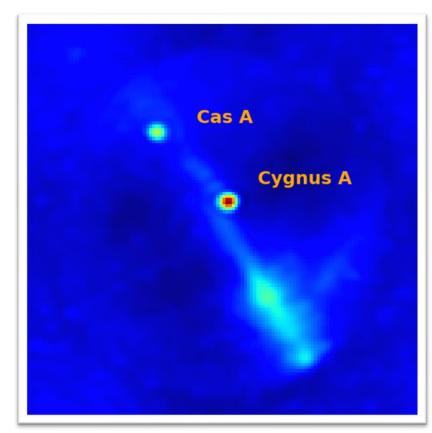
 $V_{ab}(f)$

LWA-EPIC parameter space

- All-sky coverage
- Real-time observing, commensal with other LWA modes
- Custom time resolution from milliseconds up to hours
- Designed for continuous operation
- Blind Transient Search ready

EPIC Evaluation Observations

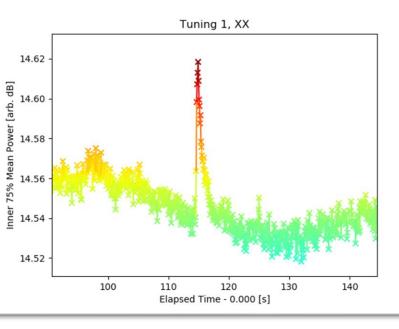

- 1. All-sky imaging fidelity and demonstration increased parameter space accessible using EPIC
- 2. Matched observations of Crab Pulsar for dispersed pulse recovery
 - Beamed observations at 46.0 MHz and 49.3 MHz

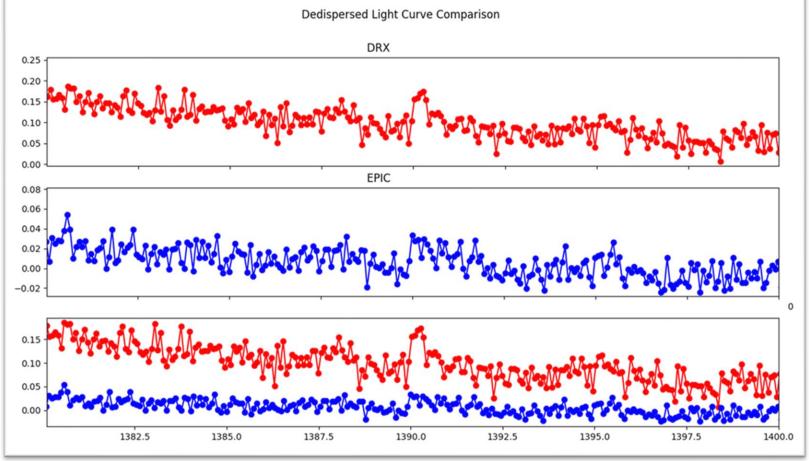


Imaging Comparison

Orville (Standard FX Corr.)

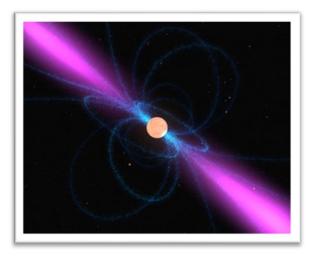
EPIC




Commensal Observations from Dec. 16th 2022 - 21:45:14 (UTC), t = 5 seconds, 128 sq. pixels, BW = 100kHz

LWA-EPIC Crab Tests

Full Spectrum DRX



Reduced bandwidth to match EPIC

Potential Applications & More

Pulsars & Pulsar Timing studies

Fast Radio Bursts (FRBs)

Stellar Flares and Exoplanet Radio Emission

Continuous monitoring of any number of LWA user defined sources

Future Work:

- Continue to improve the EPIC framework operating at LWA-SV
- Create unit tests for further installations of the EPIC system

References

- LWA EPIC github (<u>https://github.com/epic-astronomy/LWA_EPIC</u>)
- LWA Memo series (https://leo.phys.unm.edu/~lwa/memos/)
- Thyagarajan et al 2017 MNRAS 461-1
- Kent et al 2019 (arXiv:1909.03973)
- Eftekhari et al 2016 (arXiv:1607.08612)
- Images:
- LWA Collaboration for Telescope Images

Astronomy.com (<u>https://astronomy.com/news/2020/03/hunting-aurorae-astronomers-find-an-exoplanet-using-a-new-approach</u>)

MIT News (<u>https://news.mit.edu/2022/astronomers-detect-radio-heartbeat-billions-light-years-earth-0713</u>)

NASA Pulsar (<u>https://www.nasa.gov/mission_pages/GLAST/multimedia/pulsar_stills.html</u>)

UCSC News (https://news.ucsc.edu/2011/10/crab-pulsar.html)

Current Limitations to subsystem

- Balancing GPU load is the biggest constraint on what parameter space is observable
- This means balancing:
 - Image Size for Nyquist Sampling
 - Total bandwidth
 - Channel size
 - Time resolution
 - Switch throughput for writing data as fast as it is processed

