Beam Mapping of LWA using Pulsar Holography

Akshatha K Vydula

Ph.D. Candidate Arizona State University

Prof. Judd Bowman Prof. Danny Jacobs

38th Annual New Mexico Symposium 17 Feb 2023 - National Radio Astronomy Observatory,

Socorro NM

History of the Universe

Inoue et al. (2016)

21 cm signal

Challenges

Very bright foregrounds

Instrumental beam effects

LST 6.1579 Equatorial

> Beam Convolved

4

Harker(2011), Haslam(1982), Hellbourg (OVRO), Bowman(2018)

Possible solutions?

Instrumental beam effects

 $\mathbf{5}$

Beam Calibration

- 2D map the sky within the beam
- Involves mapping all the known sources in the sky:
 - $\circ \quad \text{better sky model} \Rightarrow \text{better calibration solutions}$
- Gets complicated because it requires:
 - Point sources
 - \circ High angular resolution to distinguish faint sources
 - \circ Catalogs are incomplete and have uncertainties

Beam Errors!

Proposed Solution: Beam mapping using pulsar holography.

Target Instrument

- Owens Valley Long Wavelength Array (OVRO-LV
 - Upgrading to 352 antennas.
 - \circ $\,$ Frequency: 13 to 88 MHz $\,$
- 40 m dish with LWA feed
 - ~1km from OVRO-LWA
 - LWA feed at the prime focus

Placeholder Instruments

- VLA 4 band (placeholder for 40 m):
 o Frequency Range: 70 to 82 MHz
- LWA-1 and LWA-SV (placeholder for OVRO-LWA):
 - $\circ~$ Located near VLA center and ${\sim}75~{\rm km}$ from the center
 - 288 broadband dipole antennas.
 - Frequency Range: 10 to 88 MHz

Data: VLA and LWA-1 + LWA-SV (eLWA)

Technique in a nutshell

- 1. Diff b/w pulsar off and on \rightarrow Remove effects from the sky
- 2. Simultaneous observation of pulsar: tracking through VLA & drifting through LWA's beam
- 3. Use VLA's known beam to calibrate LWA's beam

10

Sensitivity Analysis

- Ability of an antenna to detect the weakest radio source
- SEFD, System Equivalent Flux Density ~ System Temperature

SEFDs we currently know:

LWA dipole	1 MJy
LWA1 station	4.68 kJy
VLA dish	50 kJy

Correlation mode	$ au_{acc}(s)$	Sensitivity (Jy)
Single LWA dipole &		
Single VLA dish	200	3.952
256 element LWA &		
Single VLA dish	200	0.270
256 element LWA &		
26 VLA dishes	20	0.155

Pulsar selection

- 1. Bright radio pulsars
- 2. Visible during the day

From ATNF Catalog: **B1133+16** RA: 11:36:03.1198 Dec: +15:51:14.183 Source flux at 80MHz: 4730 ± 2370 mJy

First set of data

- First observation: on Sep 20, 2021 (eLWA)
- ~ 14 minutes on the target
- Frequency range: 72 MHz to 82.9MHz

LWA-1 auto-correlations

PRESTO RFI flagging

- Parameters used:
 - Integrate 5sec to find rfi and save masks (Still a detection with 1sec integration)

PRESTO: PulsaR Exploration and Search TOolkit

PRESTO detection

PRESTO: PulsaR Exploration and Search TOolkit

How well does the Binning Correlator work?

eLWA Binning correlator: part of LWA software library for Pulsar detections

Binning Correlator

- Pulsar parameters: DM, period, RA, DEC etc •
- Correlator parameters: Integration time, Channel BW, Center freq etc.
- No. of bins = Pulse period/ sub-integration time (119 for B1133+16)

Signal-to-Noise Ratio Analysis

Detected SNR for LWA-1:

- Binning Correlator: 9.02 dB
- PRESTO: 10.93 dB

Expected SNR for LWA-1:

• Signal Level: 4730 ± 2370 mJy

• SNR:
$$11.69^{+1.76}_{-3.02}$$
 dB

Conclusions & Open Questions

- Sensitivity limitations of 40m dish
- Limited by integration time:
 - $\circ \quad 1/f \text{ noise} \rightarrow \text{infinite integration can't help with sensitivity} \rightarrow \text{ what's the limit?}$
 - Gain variability, temperature fluctuations, weather conditions over long integration times
- Pulsars aren't enough. Combination of pulsars and bright sources
 - Redoing the analysis with fresh VLA+LWA data for a bright source/bright pulsar
 - Adding incoherent sources
- Improving performance of binning correlator (BW mismatch, hardcoded integration time 10ms etc)

Thank You!