

Integrating SolO/PHI magnetograms into global solar magnetic maps

Introduction

- The full-Sun photospheric magnetic field is used to drive models of the solar corona, the solar wind, and the heliosphere
 - Until recently, these fields were only measured from one perspective, along the Sun-Earth line
 - This provides reliable measurements of only about ¹/₄th of the solar disk at any one time
- Photospheric flux transport models advect magnetic fields subject to known plasma flows to represent the unobserved solar surface
- We use ADAPT, the **A**ir Force **D**ata **A**ssimilative Photospheric flux Transport model (Arge et al. 2010, 2011)
- The Solar Orbiter (SolO, Müller et al. 2020) mission is the first to carry a magnetograph off of the Sun-Earth line
- Incorporating these observations will improve full-Sun photospheric magnetic maps and the models they drive
- We present initial results from the incorporation of Polarimetric and Helioseismic Imager (PHI, Solanki et al. 2020) Full Disk Telescope (FDT) images into ADAPT full-Sun magnetic field maps
- These are used to drive Wang-Sheeley-Arge (WSA, Arge and Pizzio 2000, Arge et al. 2003, 2004) coronal and solar wind models that demonstrate the importance of incorporating non-Earth viewpoints of the solar photosphere

ADAPT

- Assimilates observations into existing full-Sun maps
- Transports flux via differential rotation, meridional circulation, and supergranular diffusion
- Also randomly emerges weak bipolar flux
- Models 12 realizations of the magnetic field to account for uncertainty in the unobserved polar and far-side evolution
- Largest uncertainties near the East limb, just before the photosphere rotates back into view from the Earth

Solo / PHI / FDT

- Full-disk magnetograms during all phases of the SolO mission Resolution depends on d_o
- During this observation, SolO trailed Earth by $\sim 18^{\circ}$
- Observed features rotating onto the East limb one day earlier
- Assimilated FDT data into an ADAPT ensemble generated with SDO / HMI data (Scherrer et al. 2011)

solarorbiter.esac.esa.int/where

THE AIR FORCE RESEARCH LABORATORY

Assimilating farside FDT magnetogram data into **ADAPT-HMI maps reduces** the ensemble uncertainty.

We thank the PHI Team for making these preliminary data available through the Solar Orbiter 8 workshop tutorials: github.com/SolarOrbiterWorkshop/solo8_totorials

Sam Schonfeld¹, Carl Henney², Shaela Jones³, Nick Arge³ ¹Institute for Scientific Research, Boston College | ²Air Force Research Laboratory | ³NASA Goddard Space Flight Center

ADAPT / FDT 1 2022-01-31 15:00:00 300 200 270° 180° Carrington Longitude [deg]

FDT impact on WSA models

HMI Only

+FDT

HMI Only

+FDT

- Arge, C. N., & Pizzo, V. J. 2000, JGR, 105, 10465

This work utilizes data produced collaboratively between the Air Force Research Laboratory (AFRL) and the National Solar Observatory. The ADAPT model development is supported by AFRL.

• WSA models the coronal magnetic field and predicts in situ solar wind from full-Sun photospheric magnetic field maps For this example, adding FDT data changes the spacecraft connectivity with little impact on the modeled coronal holes

• Adding this preliminary FDT data collapses the ensemble of solar wind predictions but does not improve the average

References

Arge, C. N., Henney, C. J., Koller, J., et al. 2010, in AIP Conf. Proc. 1216, Twelfth Int. Solar Wind Conf., 1216, ed. M. Maksimovic, K. Issautier, & N. Meyer-Vernet (Melville, NY: AIP), 343 • Arge, C. N., Henney, C. J., Koller, J., et al. 2011, in ASP Conf. Ser. 444, 5th Int. Conf. of Numerical Modeling of

Space Plasma Flows (ASTRONUM 2010), ed. N. V. Pogorelov, E. Audit, & G. P. Zank (San Francisco, CA: ASP), 99 Arge, C. N., Luhmann, J. G., Odstrcil, D., Schrijver, C. J., & Li, Y. 2004, JASTP, 66, 1295

Arge, C. N., Odstrcil, D., Pizzo, V. J., & Mayer, L. R. 2003, in AIP Conf. Ser. 679, The Tenth Int. Solar Wind Conf., ed. M. Velli et al. (Melville, NY: AIP), 190

Müller, D., Cyr, O. C., St, Zouganelis, I., et al. 2020, A&A, 642, A1

Scherrer, P. H., Schou, J., Bush, R. I., et al. 2011, SoPh, 275, 207

Solanki, S. K., Del Toro Iniesta, J. C., Woch, J., et al. 2020, A&A, 642, A11