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Introduction

Gravitational wave (GW) detection sensitivity has advanced drasti-
cally over the past decade, but the algorithms required to interpret
the associated data still need many developments. Recent efforts
[1] to use artificial intelligence for gravitational wave identification
have yielded mixed but promising results. Using Deep Neural
Networks (DNNSs) is significantly more efficient than current ap-
proaches in terms of cost, time, and computing power, but is not
yet as accurate as other methods. We set out to build a functional
DNN that is capable of identifying and analyzing simulated GW data.

Background

GWs are created when accelerating bodies create ripples in space-
time. In September 2015, the Laser Interferometer Gravitational-
Wave Observatory (LIGO) detected a brief GW signal from the co-
alescence of two massive black holes. This initiated gravitational
wave astronomy, a new field of astrophysics [2]. Machine learning
IS also a rapidly growing field, including DNNs which we used in this
project. They analyze and process data through multiple layers of
transformations.

Fig. 1: A body creates a dent in the fabric of spacetime.

Continuous gravitational waves (CWs) should occur when a rotating
mass, such as a neutron star, is asymmetric. LIGO has yet to detect
CWs, as they have extremely weak signals. Thus, for this project,
we generated simulated CW data. In actual LIGO data, the Earth’s
rotation causes a varying Doppler shift. For this test we left our
data as single frequency sine waves, a reasonable approximation
to real LIGO data given that the period of the waves we consider is
far shorter than 24 hours.

Our data are stored in NPY (NumPy array) files. Creating the
DNN model requires an input of 4 arrays: training data, training
labels, testing data, and testing labels. Our training sets contain
1600 examples, and our testing sets contain 400 examples. We
also generated a data set that was 10 times larger, which we will
run when we have the necessary computational resources.

Each wave contains 50,000 points over a time range of 1 second. The sine
waves range in frequency from 20 to 1,000 Hertz. All of the waves have an
amplitude of 1 and a random phase. We created 5 data set groups, each
with a different standard deviation to their Gaussian noise; 0.5, 1, 2, 3, and
one that was randomized across all of these values. We trained the DNNs
on each amount of noise to examine how performance deteriorated with
additional noise.

Fig 2. shows 500-point samples from example waves with specified
noise next to the spectra. The corresponding graphs with just noise are also
included.
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Fig. 2: Data with a standard deviation in Gaussian noise of 0.5 and 3.

We tested each neural network thrice, and the accuracies can be viewed in
Fig 3. This shows that the DNN, like many humans, finds features better
in the Fourier transform of the data than in the time domain signal. As ex-
pected, the accuracy of the DNN went down with noisier data. We also found
that the more data that were given to the network, the better it performed.
This leads us to believe that if there were substantially more data, the DNN
would be able to recognize even very noisy waves at a high rate. Unfortu-
nately, we did not have access to a powerful enough computer to generate
substantially more than 2,000 examples for each group.
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Fig. 3: Average accuracy for various data.
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Fig 4. shows how accuracy improves during the training process.
Notably, some of the higher noise groups did not level off in the
same way as the 0.5 noise group did. It is conceivable that if we
had more training time the accuracies would continue to improve.
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Fig. 4. DNN accuracy at each training epoch.

Our neural network serves as a proof of concept that DNNs can
be used in GW detection. While our data were simulated due to
the lack of CW observation, we believe that our approach can be
applicable to future classification efforts. In contrast to matched
filtering, the process was simple, time effective, and cheap. Our
DNN and data generation are also very scalable to be used with
larger amounts of data on stronger computers.
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