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• LANL SPH code
– Functionality

• Numerical results
– Conservation
– scaling

• Current Research

• Brief introduction 
to BWD systems
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Smoothed-Particle Hydrodynamics
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Smoothed-Particle Hydrodynamics (SPH)
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• Lagrangian Method
− fluid quantities carried by moving 

interpolation points (i.e., particles), which 
follow the fluid motion

• For any physical quantity, A: 

− Derived from delta function:

− Derivatives are determined by:

𝑟 ≤ 2ℎ

𝑊

𝑟
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Euler equations

SPH Equations

SPH discretization
• Conservation of

− Mass

− Energy

− Momentum

− Entropy

• Automatically satisfied

adiabatic flows
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FleCSPH
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https://github.com/laristra/flecsph
FleCSPH

• FleCSPH (Loiseau et al., Software X (2020)): SPH code build with the LANL 
FleCSI numerical framework as part of the LANL Ristra Project. FleCSPH is a 
general-purpose SPH code, but has been applied primarily to astrophysical 
problems. Some core capabilities:
1. Implementation of different SPH Kernels
2. Astrophysical Equations of State (EoSs), both analytic and tabulated

1. Ideal gas, polytropic, piecewise polytropic, cold white dwarf (ZTWD), ZTWD+ideal gas 
2. Finite-temperature nuclear matter (StellarCollapse), Helmholtz

3. Material EoSs: Liquid, Mie-Grüneisen, Osborne, Tillotson
4. Artificial viscosity: constant and with shock trigger (Cullen and Dehnen (2010))
5. External potentials for boundary conditions and relaxation
6. Newtonian Gravity via N-body calculations or Fast-Multipole Method
7. Fixed general-relativistic background metric for static and rotating stars
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Approximation of long-range forces 
(gravitation/electromagnetic) 

• Based on Taylor series 

• Multiples steps:
− P2M, M2M, M2L, L2L, …

• Using the whole tree 
− Global communications 

Fast Multipole Method (FMM)
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Newtonian gravity with FMM
Local particles interact individually – O(N2) 
cost:

p 

Distant particles interact through 
tree nodes – O(N log N) cost:

c 

M, Qij, … 

node Bnode A
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FleCSPH Test Case: Sodtube

One-dimensional Sod shock tube with 10,000 particles. Panels, from top to 
bottom: density, pressure, specific internal energy, and velocity. Each panel 
contains four different times. (Loiseau et al., Software X, 2020)
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FleCSPH Test Case: Gravity Stellar Oscillations
• Truncation error in the initial configuration triggers small oscillations of the star
• Oscillation damped by the viscosity during the evolution
• Checks consistency and conservation properties for the coupled 

hydrodynamics and gravity

 1

 1.005

 1.01

 1.015

 1.02

 1.025

 0  5  10  15  20  25  30  35  40

g
ra

vi
ta

tio
n

a
l e

n
e

rg
y:

 W
(t

) 
/ 

W
(0

)

time [s]

P0 = 7.75 s

FMM, θMAC = 0.5

FMM, θMAC = 0.3

FMM, θMAC = 0.2

exact N-body scheme

10-11

10-10

10-9

10-8

10-7

 0  5  10  15  20  25  30  35  40

sp
e

ci
fic

 li
n

e
ra

 m
o

m
e

n
tu

m
, 

P
/M

 [
cm

 s
-1

]

time [s]

FMM, θMAC = 0.5

FMM, θMAC = 0.3

FMM, θMAC = 0.2

exact N-body scheme

10-21

10-20

10-19

10-18

 0  5  10  15  20  25  30  35  40

sp
e

ci
fic

 a
n

g
u

la
r 

m
o

m
e

n
tu

m
, 

Ω
 =

 L
/M

R
2
 [

s-1
]

time [s]

FMM, θMAC = 0.5

FMM, θMAC = 0.3

FMM, θMAC = 0.2

N-body scheme

Oscillations of a star near equilibrium (14,993 particles). Left panel: gravitational energy evolution for the exact N-
body gravity and the FMM approximation with three different MAC values: tan(θMAC) = 0.2, 0.3 and 0.5. Center 
and Right: evolution of specific linear and angular momenta, respectively.
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Compact Mergers

• Binary white dwarfs 
• Binary neutron stars
• Neutron star and white dwarf 

systems

FleCSPH Current Research

Visualization: Pascal Grosset

Kilanovae

• Rapid neutron capture 
nucleosynthesis after neutron star 
merger

• Optical and infrared spectra

Visualization: Oleg Korobkin

Astrophysical Solids

• Asteroid impacts
• Dynamics of the solid neutron star 

crust in single rotating neutron stars 
and binary neutron star mergers

Visualization: Roxana Bujack

A. Stewart et al., SC21
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Binary White Dwarfs
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Why simulate Binary White Dwarfs

• Type Ia supernovae (SNeIa) are commonly accepted to be the observed 
transient produced after a thermonuclear detonation inside a white dwarf star

• SNeIa typically accretion from an evolved main-sequence star onto a white 
dwarf 
− SNeIa rate from these systems is incompatible with observations

• Extremely luminous SNeIa speculated to be derived from double-degenerate 
white dwarf mergers

• Tidal dissipation and gravitational radiation drive the binary to merger
• The less massive white dwarf begins to accrete material onto the other 

− Fundamentally unstable, requiring simulations to capture dynamics
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BWD Simulations
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BWD Merger Simulation

• Co-rotating system, composed of 298,341 particles
− M1= 1.0 Ms and M2 = 0.5 Ms, q = 0.5
− ZTWD+thermal EoS
− Initial oribital period of 74.5s
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BWD Merger Simulation

• Co-rotating system, composed of 298,341 particles
− M1= 1.0 Ms and M2 = 0.5 Ms, q = 0.5
− ZTWD+thermal EoS
− Initial oribital period of 74.5s
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BWD Merger Simulation

t = 550.702 seconds
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BWD Merger Simulation

t = 550.702 seconds
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BWD Merger Simulation
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BWD Merger Simulation
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BWD Merger Simulation
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The total, kinetic, and internal specific 
energy of the system over the first 215s

BWD Conservation

Binary system energy versus time

The momentum in the x- and y-
directions of the system over the first 
215s

Binary system momentum (x,y) versus time

The angular momentum in the x- and y-
directions of the system over the first 
215s

Binary system ang. momentum (x,y) versus time
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Summary
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Summary
• SPH is uniquely suited to handle astrophysical systems
• Compact merger modeling has been implemented into the LANL SPH code 

FleCSPH
• Initial conditions and setup remain important
• Future Applications of FleCSPH at LANL:

− Compare WD-WD mergers with established results
− Post-process nuclear burning results from mergers
− Systematic study of WD-NS mergers and accretion disk formation


