

Probing the Star Formation and Metal Enrichment History of the Bulge of M31

Denis Leahy¹

1. Dept. Physics and Astronomy, University of Calgary

Introduction

M31 is our closest neighboring large galaxy and is a spiral similar in many ways to the Milky Way. Studies of large numbers of stars have been done in detail for our own Galaxy but have uncertainties related often to uncertain distances or to strong extinction. The advantage of studying objects in M31 isthat it is at a well-known distance

Many surveys have been performed on M31. The previous NUV/FUV survey of M31 was performed by Galex at a spatial resolution of 4 to 5 arcseconds (Kang et al., 2009). The Ultraviolet Imaging Telescope (UVIT) has a spatial resolution of 1 arcsecond and field of view of 28 arcminutes. A comparison between the Galex (left) and UVIT (right) images is shown below.

From 2016 to 2019, it surveyed M31 in 19 fields (shown on DSS2 image of M31 below). All UVIT fields have data in the FUV 148 nm filter

Previous work with UVIT on M31 carried out SED fits for 30 hot stars with PHAT data in the bulge (Leahy et al. 2018), created a UVIT catalog (Leahy et al. 2020a), and matched UVIT with Chandra sources for SED fitting. Some important results are: the bulge of M31 has a hot star populations (5- 20 Msun) which were formed less than ~100 Myr ago; the UVIT sources that are X-ray emitters (see Figure, above right) are mostly globular clusters in M31, with the X-rays from accreting LMXBs and the UV from hot bluehorizontal branch stars:

M31

M31's inner spheroid is primarily composed of red metal-rich stellar populations with broad red giant branches indicative of a spread in metallicity and stellar age (e.g. Durrell, Harris, and Pritchet 2004).

Spectroscopic studies revealed a wealth of substructure and significant inhomogeneity in M31's stellar halo (e.g. Richardson et al. 2009) and a massive, metal-rich, extended disk (Ibata et al. 2005).

McConnachie et al. (2018) estimated that the various distinct substructures in M31's stellar halo were produced by at least 5 separate accretion events within the last 4 Gyr.

Evidence for a global burst of star formation 2-4 Gyr ago (Williams et al. 2015).

Measurements of [Fe/H] and [alpha/Fe] for 129 RGB stars in the stellar halo of M31, including its Giant Stellar Stream (Escala+2020) find a low [alpha/Fe] component consistent with an accretion origin

Analysis

The spatial structure of the stellar bulge is being measured in NUV and FUV (contour map of central kpc of the M31 shown below left). FUV color- NUV color diagram shown below right, with simple model colors.

Stellar Population Analysis I (CIGALE)

Extract FUV, NUV, optical, NIR, FIR (17 bands) magnitudes for the bulge, defined by an ellipse with semi-major axis of 188"

The large ellipse was sub-divided into 10 annuli (40 quadrants) of equal-area to study spatial variations

Instrument Filter Wavelength (μm) UVTF F168W 0.1481 UVTT F169M 0.1608 UVTF F129M 0.1277	Wavelength (μm) 0.1481 0.1608 0.1717		
UVIT F148W 0.1481 UVIT F169M 0.1608 UVIT F127M 0.1717	0.1481 0.1608 0.1717		
UVIT F169M 0.1608	0.1608 0.1717		
UVET F172M 0.1717	0.1717		
UVII FII2M U.I.II			
UVIT N219M 0.2196	0.2196		
UVIT N279N 0.2792	0.2792		
SDSS u 0.3543	0.3543		
SDSS g 0.4770 04100 550 500 450	0.4770	043000 55.0 50.0 45.0 40.0 53.0	46530
SDSS r 0.6231	0.6231		
SDSS i 0.7625	0.7625		
SDSS z 0.9134	0.9134		
IRAC Channel 1 3.6	3.6		
IRAC Channel 2 4.5	4.5		
PACS Blue 70	70	Stand Stand State	
PACS Red 160	160		
SPIRE PSW 250	250		
SPIRE PMW 350	350		
SPIRE PLW 500	500		

Cigale Analysis

The multiband photometry is modeled using the public CIGALE code (Burgarella et al 2005, Boquien et al, 2019)

7.6E9 2.4E8 8.5E4 1.0E10 0.18 6.3E8 -0.02 1.1E4 1.4E7 -0.50 0.10 83.4 6.5E4 4.1E9 1.0E10 0.30 0.18 1.4E8 6.3E8 -0.01 0.22 3.0E3 2.4E7 -0.79 5.9E4 3.1E9 1.0E10 0.22 0.21 1.2E8 6.1E8 0.03 04.2 2.0E3 2.6E7 _0.75 0.24 0.19 9.5E7 6.1E8 0.03 116.7 5.5E4 2.7E9 1.0E10 0.30 1.8E3 2.7E7 -0.76

(multiple SSPs) i) include more than 2 SSPs

ii) allow each SSP to have its own metallicity and extinction Write our own modelling/fitting code using existing SSP models. Simplifying assumptions: no nebular or dust emission

Summary of M31 Bulge SFH Analysis

Ann1

Ann2

inn3

nn4

Using CIGALE and our multiple-SSP modelling code, we measure the star formation history and metallicity of the bulge of M31. Ages of old and intermediate age SSP better determined by CIGALE, metallicities and extinction better determined by our code. Compare results to those from Dong+2018, Dong+2015, Saglia+2018, etc. to derive a consistent picture

The bulge has 3 stellar components: -a dominant 12 Gyr old population ([Z/H]=0.3), -a small (~1% by mass) 700 Myr old population ([Z/H]=0),

- -in the central 100", a small (~106 by mass) ~25 Myr old population ([Z/H]=-0.7).
- The metallicity decreases as the stellar populations are younger (agrees with Dong+2018)

This is surprising, but can be explained by the merger history of M31, where the newer populations form from more pristine infalling gas.

This work funded by the Canadian Space Agency

Boquien, M., Burgarella, D., Roehilly, Y., et al. 2019, A&A, 718 622, Burgarella, D., Buat, V., & Iglesias-Paramo, J. 2005, 724 MNRAS, 360, 1413 Dong, H., Oisen, K., Lauer, T., et al. 2016, MNRAS, 478, 5379 Johnson, L. C., Seth, A. C., Dalcanton, J. J., et al. 2015, ApJ, 802, 127 Kang, Y., Bianchi, L., & Rey, S. - 2009, ApJ, 703, 614 Leahy, D., Bianchi, L. & Postma, J. 2018, ApJ, 159, 269 Leahy, D. A. & Chen, Y. 2020, ApJS, 250, 23 Leahy, D. A. Botta, J. (Chen, Y., et al. 2020, ApJS, 240, 25 Leahy, D. A. Postma, J., Chen, Y., et al. 2020a, ApJS, 247, 47 Leahy, D., Buick, M., Postma, J., et al. 2021, AJ, 161, 215. Leahy, D., Morgan, C., Postma, J., et al. 2021, 768 UAA, 11, 769 151. Williams, B. F., Lang, D., Dalcanton, J. J., et al. 2014, ApJS, 215, 9 Postma, J. E., & Leahy, D. 2017, PASP, 129, 115002 Postma, J.E., & Leahy, D. 2020, PASP, 132, 05403 Tandon, S. N., Postma, J., Joseph, P. et al. 2020, AJ, 159, 158 Saglia, R. P., Opitsch, M., Fabricius, M. H., et al. 2018, 796 A&A, 618, A156