Orbital evolution of binary black holes in active galactic nucleus disks: a disk channel for binary black hole mergers?

Yaping Li (LANL)

With Adam Dempsey, Shengtai Li, Hui Li, Jiaru Li (LANL)

The 36th Annual New Mexico Symposium, 13 November 2020

BBH mergers

Image credit: LIGO-Virgo/Northwestern U./Frank Elavsky & Aaron Geller

- BBH merger channels
 - ✓ AGN disks (McKernan+12, Bartos+17,Stone+17)
 - ✓ Isolated binary star evolution (e.g., Belczynski+10)
 - ✓ Chance encounter in a dense stellar environment (e.g., O'Leary+09;Wang+16)
- AGN disks channel:
 - ✓ Heavier BBH mergers (Yang+19; e.g., GW190521)
 - ✓ Large spin magnitudes (McKernan+12)
 - ✓ Electromagnetic counterpart McKernan+19; Graham+20)

Review of BBH Mergers in Disks

- Similar problem: Supermassive binary black holes mergers
 - Similar to planetary migration for a smaller secondary (Armitage&Natarajan 2002; Cuaddra+09)
 - Equal mass ratio (MacFadyen et al. 2008): orbital decay driven by spiral arm in the CBD
- Recent simulations for circum-binary: gap not empty, but with gas streams

 Orbital expand: Roedig+12; Miranda+17; Moody+19 (2D+3D); Muñoz+19; Muñoz+20
 Orbital contract: Tang+17; cold disk(Tiege+20; Heath+20)
 - \circ Duffell+20: inspiral for q<0.05; outspiral for q>~0.05 (see also Derdzinski+20)
- Embedded Binary Simulations in AGN disks (Baruteau, Cuadra & Lin 2011) • Binary orbit contract
 - But, did not resolve circum-single disk region appropriately...
- The fate of binary BHs in AGN disks \rightarrow Contract or Expand?
 - Properly resolve circum-single disk region: small softening scale with higher resolution?
 - O Quasi-steady state?
 - Different accretion scenarios?

- Binary open gap and induce large scale spiral arms.
- Circum-binary disk inside Hill radius of the binary, and outer-spiral arms feeding the binary.
- Inter-spiral arm connecting two BHs and prominent circum-single disk.

Binary Dynamics

- Small softening: binary expand.
 - Binary eccentricity excitation
- Large softening: binary contract.
- Similar global migration for small and large softening.
- Insensitive to accretion.
- Reach a steady state: Binary semi-major axis $a_{\rm bin}$ evolution smoothly evolve after release.
- $a_{\rm bin}$ is determined fully by disk force.

Why BBH expands? \rightarrow Gravitational torque

- Small softening: the domination of the positive contribution from the CSD region around the binary → BBH expand.
- Large softening: smooth the CSD contribution, dominated by negative torque from outer-spiral arms → BBH contract.

Retrograde BBH

The domination of the positive contribution from the CSD region both for small and large softening \rightarrow BBH contracts (Binary angular momentum is negative).

Conclusions

- BBH with a small softening binary to appropriately resolve CSD region will expand, but will contract if a large softening is adopted.
- The expansion of the binary is due to the domination of the positive contribution from the CSD region around the binary.
- Binary eccentricity will be significantly excited rapidly for the expanded binary.
- For retrograde orbits, BBH contracts both for the small and large softening.

Outlook

- Realistic softening (Muller+12): 3D simulation.
- Isothermal EoS: implement radiative cooling/heating, and/or AGN feedback (Yuan+18;Yoon+18;Li+18) or viscosity prescription.
- Other parameter space: disk mass, disk scale height, binary mass ratio.....

BBH accretion

- The accretion rate on the short time-scale is highly variable.
- The periodicity is about $\Omega_{\rm bin}$ (early stage or for very high eccentricity) or $2\Omega_{\rm bin}$ (around 900 orbits).

