

TEXAS TECH UNIVERSITY"

Jet eclipses in X-ray binaries

Thomas J. Maccarone, along with Jakob van den Eijnden, Tom Russell and Nathalie Degenaar (Amsterdam)

Jets from X-ray binaries, what we know and what we want to know

How eclipses help

Which sources will be the best targets

Why understand jets?

Why study X-ray binaries?

Belczynski et al. 2012

Jets from X-ray binaries

From Fender et al. 1999; see also Tananbaum et al. 1972, Hannikainen et al. 1997

Flat spectrum can be explained by synchrotron self-absorption in conical jet (Blandford & Konigl 1979)

Cyg X-1 (at 2 kpc) is barely resolved, other objects are generally unresolvable

BK model predicts same size in resolution elements at all wavelengths, because both resolution and jet size are proportional to wavelength

Misaligned jets:

Clearest for GRO J1665-40 - jet inclination from two sided proper motion with small precession is 85+-1 degrees

Binary inclination angle about 70 degrees - strong ellipsoidal modulations, not elipsing

Variability studies

Casella et al. 2010

IR lags X-rays

Tetarenko et al. 2019

Jet eclipses

- Test of Blandford & Konigl model
- Mass ratio between donor and accretor
- Inclination angle of binary
- Jet opening angle
- Speed of material in jet

Some sample predictions

Left: Aql X-1, Right: Sco X-1. Color coding gives orbital phases 0.01, 0.02, 0.04, 0.07

Jet eclipses should happen

Probably requires ngVLA to exploit full potential, but VLA can do proof of concept work

Opens up new possibilities to understanding both jet structure and binary parameters