Sub-kpc Magnetic Field Fluctuations around Cygnus A

Lerato Sebokolodi, Ph.D. candidate, Rhodes University, NRAO & SARAO Advisors: Rick Perley, Oleg Smirnov, Chris Carilli and Jean Eilek

35th Annual New Mexico Symposium, 2020

Prior Work on Cygnus A

- \Box Cluster magnetic field strengths: 2-10 μ G
- Field scales of 5-20 kpc (derived from the rotation measure map)

Chandra image credit: M. Wise, R. Duffy & B. Snios.

RA (J2000)

Faraday Rotation a Probe of Line of Sight Magnetic-Fields

A rotation of a plane of polarization of a **linearly polarized** wave as it passes through a **magnetized plasma**.

Fractional polarization: $|p(\lambda^2)| = p_0$

Polarization angle: $PA(\lambda^2) = PA_0 + RM\lambda^2$

In a **simple case:** purely synchrotron emitting source behind a uniform magnetized plasma, the plane of polarization will be rotated as follows:

Source polarization and rotation due to cluster gas:

rotation measure, RM = 812 $\int n_e B dL$ [rad m²]

ne electron density of the magnetized plasma.B is the line of sight magnetic field.dL is pathlength across the magnetized plasma.

Wideband, High Spectral Resolution Observations

Instrument	Jansky Very Large Array	
Date of Observations	Nov 2014 - Nov 2015	4k x 4k images, with about 1200
Configurations	A, B, C and D	
Frequency bands	S, C, X and Ku (2-18 GHz)	frequency channels at each Stokes.
On-source observing duration	44 hours	G

Data products: Stokes Q, U, and I cube images at 0.75" (2-18 GHz), and 0.30" (6-18 GHz).

- **Fractional polarization:** $\sqrt{(Q^2 + U^2)/I}$
- Polarization angle: ½ tan⁻¹(U/Q)
- **Faraday dispersion function:** Fourier transform of the fractional polarization

Polarization Decreases with Decreasing Frequency: 0.75"

5

24s

 10^{-1}

23s

30s

 10^{-1}

Lines of Sight Polarization Behavior at 0.75"

The observed:

- All 2000 lines of sight depolarizes.
- Depolarization behaviors have no spatial preference.
- Single peaks, broadening, or multi-peaks in the Faraday dispersion functions.
- $\begin{tabular}{ll} \hline \Box & Deviations from linearity in PA vs. λ^2 \\ \end{tabular}$

Possible explanations for the depolarizations:

- Unresolved sub-kpc fluctuations in the Faraday rotating medium.
- Mixing of thermal and synchrotron gas causing differential rotation.

Polarization Decreases with Decreasing Resolution: 4GHz

Log Fractional Polarization

1.50"

Faraday Rotation Study: 0.30" and 6-17 GHz

Fit depolarization model: $p = p_0 e^{2iPA0} e^{2iRM\lambda^2} e^{-2\sigma^2\lambda^4}$, σ is RM dispersion = 812 B_{rad} L/ \sqrt{N} [rad m²]

Intrinsic Magnetic Field Orientation Derived from PA₀

Predictions of Polarizations at Longer Wavelengths

Assumption: p₀ and PA₀ maps at 0.30" represent the true source emission, and RM is the true Faraday rotating screen.

Step 1: $p = p_0 e^{2i PA_0} e^{2i RM \lambda^2}$

Step 2: Derive Stokes q and u.

Step 3: Convolve q and u to 0.75"

These show that the fluctuations within the RM map at 0.30" accurately predict longer wavelength, low resolution data for the majority of the lines of sight.

Summary

- We observed Cygnus A using JVLA: A, B, C and D configuration spanning 2-18 GHz bandwidth.
- We find significant decrease in the fractional polarization with decreasing frequency in all lines of sight (LoS) across the lobes.
- There is oscillatory structure in the depolarization for the majority of the LoS.
- The lobes also depolarize significantly with decreasing resolution.
- A simple model of RM screen at 0.30", high frequency data is remarkably effective in predicting the low frequency 0.75" data.
- This is a strong indication that the majority of the depolarizations are caused by sub-kpc fluctuations present in the Faraday rotating medium.