Detecting Complex Organic Molecules in Prestellar Cores in the Taurus Star Forming Region

Samantha Scibelli

3rd year Graduate Student and NSF Fellow Advised by Dr. Yancy Shirley

Steward Observatory, University of Arizona

The 35th Annual New Mexico Symposium 21 February 2020 - National Radio Astronomy Observatory

COMs in Prestellar Cores

B68 Birthplace of low-mass stars $(M \le a \text{ few } M_{\odot})$ Dense $(10^4 - 10^5 \text{ cm}^{-3})$ & cold ($\leq 10\text{K}$)

Methanol CH₃OH

Acetaldehyde CH₃CHO

Dimethyl Ether CH₃OCH₃ When, where and how are these molecules forming in prestellar cores?

Origins of Complex Molecules

Gas: $CH_3OH_2^+ + e^- \rightarrow CH_3OH + H$ only 3% yield ... *too SLOW* (Geppert et al. 2006)

Origins of Complex Molecules

Solid: CO + H \rightarrow HCO + H \rightarrow H₂CO + H \rightarrow CH₃O + H \rightarrow CH₃OH

COMs in Prestellar Cores

COMs observed **in only a few (< 10)** well-known dense and evolved prestellar cores

Survey of Starless and Prestellar Cores in Taurus

Conducted a large-sample systematic survey of 31 prestellar cores selected from NH₃ mapping results (Seo et al. 2015) in the Taurus Star Forming region

Scibelli & Shirley 2020 arxiv.org/abs/2002.02469

Detected methanol (CH₃OH) in 100% of the cores targeted!

Detected methanol (CH₃OH) in 100% of the cores targeted!

Detected acetaldehyde (CH₃CHO) in 70% of the cores targeted!

Detected acetaldehyde (CH₃CHO) in 70% of the cores targeted!

84 GHz CH₃CHO 2-1 transition (E_{up} = 5 K) detected in 6 of the 21 cores for which the 96 GHz CH₃CHO 5-4 transition was detected in

CH₃CHO: CTEX Method

CH₃CHO: CTEX Method

CH₃CHO: CTEX Method

CH₃OH: RADEX Method

CH₃CHO: CTEX Method

CH₃OH: RADEX Method

Methanol Abundances

RA (J2000)

Virial Analysis

 $\overline{2}$ R

"More-evolved" **I**) cores show lower abundances of methanol and acetaldehyde Could CH₃OH 2) and CH₃CHO be chemically linked?

Evolutionary Models for L1544

ARO 12m OTF Mapping

Mapping helps us understand the distribution of methanol along the *filaments*

ARO 12m OTF Mapping

Mapping helps us understand the distribution of methanol along the *filaments*

L1521E COM Line Survey

Table 1. Complex Organic Molecule Fit Results									
Molecule	Transition	ν	E_u/k	$^{a}\mathbf{g}_{u}$	A_{ul}	T_{mb}	$\sigma(\mathbf{T}_{mb})$	$I(T_{mb})$	$\sigma(I)$
		(GHz)	(mK)		(s^{-1})	(mK)	(mK)	$(\rm mK~km~s^{-1})$	$(mK \ km \ s^{-1})$
CH_3CHO	$3_{1,3} - 2_{0,2} A^*$	101.892410	7.7	14	4.0E-06	23.1	3.8	10.7	1.3
	$5_{0,5} - 4_{0,4}$ A	95.963465	13.8	22	3.0E-05	89.0	9.0	30.0	2.0
	$5_{0,5} - 4_{0,4} E$	95.947439	13.9	22	3.0E-05	50.7	8.0	22.76	2.0
	$2_{1,2} - 1_{0,1} A^{++}$	84.219750	5.0	10	2.4E-06	24.0	6.0	6.98	1.3
	$4_{0,4} - 3_{0,3}$ A	76.8789525	9.2	18	1.5E-05	95.64	15.0	36.0	3.9
	$4_{0,4} - 3_{0,3} E$	76.8664357	9.3	18	1.5E-05	110.36	15.0	40.635	3.9
	$4_{1,4} - 3_{1,3} E$	74.9241336	11.33	18	1.3E-05	50.99	14.0	14.0	3.2
	4 _{1,4} - 3 _{1,3} A	74.8916770	11.26	18	1.3E-05	58.83	16.0	14.658	3.5
$\rm CH_3OCH_3$	$4_{1,4} - 3_{0,3}$ AA	99.326072	10.2	90	5.5E-06	9.91	3.0	3.345	0.65
	$4_{1,4} - 3_{0,3} EE$	99.325217	10.2	44	5.5E-06	11.61	3.0	4.65	0.71
	$4_{1,4} - 3_{0,3}$ AE+EA	99.324364	10.2	54	5.5E-06	5.465	3.0	7.81	1.3
	$4_{2,3} - 4_{1,4}$ EE	93.857100	14.7	72	5.7E-05		2.2		0.8
	$2_{2,1} - 2_{1,2}$ EE	89.699810	8.4	40	3.7E-05		2.2		0.8
CH_2CHCN	$8_{0,8} - 7_{0,7}$	75.585692	16.3	51	3.4E-05	58.6	7.0	16.71	1.6
	$8_{1,7} - 7_{1,6}$	77.633835	18.9	51	3.6E-05	39.6	6.0	11.96	1.4
	$9_{0,9} - 8_{0,8}$ *	84.946000	20.4	57	4.9E-05	29.9	4.0	12.0	1.7
	$9_{1,8} - 8_{1,7}$ *	87.312810	23.1	57	5.3E-05	24.3	4.7	9.9	1.9
	$5_{1,5} - 4_{0,4}$ *	89.130910	8.8	33	1.8E-06		1.9		0.8
	$10_{1,10} - 9_{1,9}$	92.426257	26.6	63	6.8E-05	20.4	4.4	4.386	0.79
	$10_{0,10} - 9_{0,9}$	94.276641	24.9	63	6.2E-05	29.4	5.0	8.02	1.0
	$10_{1,9} - 9_{1,8}$	96.982446	27.8	63	7.2E-05	17.4	4.7	4.55	0.91
	$11_{0.11} - 10_{0.110}$	103.5753916	29.9	69	8.8E-05		4.1		0.85

Scibelli et al., in Prep

L1521E COM Line Survey **CH**₃OH Estimating true column density from source size: 0.4 $\theta_{\text{IRAM}_{\text{beam}}^2} + \theta_{\text{source}}^2 = \theta_{\text{IRAM} \odot \text{source}}^2$ 0.2 Underestimates column density by factor of ~2.6 Nagy et al. 2019 20 25 Corrected Source Size $- N_{tot} (10^{12} \times \text{cm}^{-2})$ $T_{ex} = 4.549 + 0.753$ 18 $T_{ex}(K)$ -0.565 24 L1521E CH₃OH IRAM 30m source size $N_{tot} = 14.23e12 + 5.152$ 16 -3.78314 23 $(ng_{u}/g_{u})^{52}$ 12 10 8 f = 1 $T_{ex} = 4.577 + 1.583$ 6 20 -0.936 $N_{tot} = 5.440e12 + 4.042$ -2.31919 2

85 100 115 130 145 160 175 190 205

10

25

40

55

70

Source Size (arcsec)

Scibelli et al., in Prep

16

18

14

10

 $E_{u}(K)$

12

Scibelli et al., in Prep

Next: Understanding COM Spatial Distribution

Important Takeaways

We observed methanol (*CH*₃*OH*) *in 100*% of the 31 cores targeted and acetaldehyde (*CH*₃*CHO*) *in 70*%!

We conducted one of the first survey's to

target a large, homogenous sample of cores, warranting a comparison between cores of similar environments

Acetaldehyde, dimethyl ether and vinyl cyanide have been detected in young core L1521E!

Our abundance measurements provide constraints for astrochemical models

Complex Organics are forming early and often in prestellar cores!